博士論文

ポリヒドロキシアルカン酸生合成遺伝子の解析と 共重合ポリエステル合成細菌の分子育種に関する研究

Molecular analysis of polyhydroxyalkanoate biosynthesis genes and genetically engineered bacteria for production of practical copolymers

熊本県立大学大学院環境共生学研究科環境共生学専攻 食品バイオ工学研究室

外村 彩夏

2014年度 (2015年3月)

ポリヒドロキシアルカン酸生合成遺伝子の解析と共重合ポリエステル

合成細菌の分子育種に関する研究

目次

		頁
第一章	序論	5
1-1	合成高分子	6
1-2	生分解性プラスチック	6
1-3	ポリヒドロキシアルカン酸 (PHA)	11
1-4	Pseudomonas sp. 61-3 が合成する PHA	15
1-5	PHA 顆粒の特徴と PHA 顆粒結合タンパク質	18
1-6	Ralstonia eutropha が合成する PHA	21
1-7	二酸化炭素からの PHA 生産	23
1-8	大腸菌を宿主とした共重合ポリエステルの合成	25
1-9	研究の目的	26
引用文献(第一章)		29

第二章	Pseudomonas sp. 61-3 のポリヒドロキシアルカン酸顆粒結合		
	タンパ	ク質遺伝子のクローニングと顆粒結合タンパク質の局在性	38
2-1	緒言		
2-2	実験操作		
	2-2-1	使用菌株および使用プラスミド	40
	2-2-2	菌株の保存	40
	2-2-3	GA24 遺伝子のクローニング	42
	2-2-4	<i>phaCl</i> _{Ps} 遺伝子破壊株(<i>Pseudomonas</i> sp.C1-TnK)の作製	50
	2-2-5	遺伝子組換え株の作製	51
	2-2-6	顆粒結合タンパク質の単離	51

	2-2-7	SDS-PAGE	52
	2-2-8	ガスクロマトグラフィー (GC)	52
2-3	結果および考察		
	2-3-1	<i>phbP</i> _{Ps} および <i>phbF</i> _{Ps} 遺伝子のクローニングと同定	52
	2-3-2	PHA のモノマー組成と PHA 顆粒結合タンパク質の局在性	58
2-4	小括		62
引用文献	献(第二	章)	64
第三章	Pseudo	<i>monas</i> sp. 61-3 のポリヒドロキシアルカ酸生合成遺伝子	
	クラス	ター上に存在する機能不明遺伝子	67
3-1	緒言		68
3-2	2 実験操作		68
	3-2-1	使用菌株および使用プラスミド	68
	3-2-2	機能不明 ORF の転写の確認	70
	3-2-3	機能不明 ORF 導入株の作製	72
	3-2-4	機能不明 ORF 破壊株の作製	73
	3-2-5	機能不明 ORF の菌体内 PHA 分解酵素活性	75
3-3	結果およ	てび考察	76
3-4	小括		86
引用文献	献(第三	章)	88
第四章	組換え	Ralstonia eutropha による PHA 生産	90
4-1	緒言		91
4-2	実験操	作	91
	4-2-1	使用菌株および使用プラスミド	91
	4-2-2	組換えプラスミドの作製	93
	4-2-3	R. eutropha H16の phbC _{Re} 遺伝子破壊株の作製	100

4-2-4 組換え株の作製

	4-2-5	ポリエステルの性質と物性評価	102	
4-3	結果および考察 103			
4-4	小括		114	
引用文南	、献(第四章)			
第五章	大腸菌	を宿主とした糖からの生分解性共重合ポリエステルの		
	生合成~ (R)-3-ヒドロキシアシル CoA リガーゼ遺伝子の			
	クロー	118		
5-1	緒言 119			
5-2	実験操作 12			
	5-2-1	使用菌株および使用プラスミド	120	
	5-2-2	組換えプラスミドの作製	122	
	5-2-3	大腸菌組換え株の作製と PHA 生産	126	
	5-2-4	ポリエステルの性質と物性評価	127	
5-3	結果および考察		128	
	5-3-1	大腸菌における P(3HB-co-3HA)共重合ポリエステルの生合成	128	
	5-3-2	合成された P(3HB-co-3HA)共重合ポリエステルの性質と特徴	133	
5-4	小括		137	
引用文南	伏(第五	章)	140	
第六章	総括		142	
引用文南	伏(第六	章)	147	
Appendi	x		148	
	Append	ix-1 使用培地	149	
	Append	ix-2 protocols	153	

第一章

序論

1-1 合成高分子

今日、地球環境の悪化が深刻な問題となっている。特に、私たちの身近な問題である産 業廃棄物および生活廃棄物の蓄積によってもたらされる環境問題は多くの関心を集めてい る。

プラスチックは合成樹脂を表す総称で、化石燃料由来の合成高分子材料の代表的なもの である。軽くて強く、耐久性にすぐれ、透明性がよく、着色が容易で、水、ガス、電気を 通さないなどの利点をもっていることから、プラスチックは私たちの生活に欠かせない合 成高分子材料であるといえる。2013 年度の日本におけるプラスチック原材料生産は年間約 1058 万トンに達し、その需要先は私たちの生活の中で多岐にわたっている^{1,2)}。しかしなが ら、近年では、大量に生産されたプラスチックは、用途が耐久消費財から使い捨て商品ま での多方面にわたっているために、回収は事実上不可能であり、さまざまなリサイクル技 術が開発されているものの、まだ多くはゴミとして排出されている。その結果、廃棄物処 理能力の限界を迎える時代となった。プラスチックは、化学的にきわめて安定な化合物で あり、丈夫で腐りにくい特徴を持っているが、反面、廃棄後、完全に分解されることがな いために公害の元凶にもなっている³⁵。地表に放置されたプラスチックは散乱ゴミとなり、 野生動物を傷つける可能性がある。また、プラスチックが河川や海洋に流れ込み、海洋生 物が誤って食し死に至る、漁業の障害になる、など深刻な海洋問題も引き起こしている。 さらには、プラスチックをごみ処理場で焼却する際には、高温を発して、焼却炉をいため たり、不適切な焼却方法によってはダイオキシンなどの有毒物質を発生することもある^{4,9}。

そこで、近年、石油由来の合成高分子材料に代わる代替製品として、自然界に存在する 微生物により分解される生分解性プラスチックが環境調和型プラスチックとして注目され、 実用化に向けての開発が行われている。

1-2 生分解性プラスチック

前述のように、多くの合成高分子の廃棄物は、自然環境中で分解されないために、さま ざまな環境問題を引き起こしている。そこで、自然との調和を考慮した環境にやさしい易 分解性の高分子を生産する産業体系に変換していく必要があり、生分解性プラスチックが

環境調和型プラスチックとして期待されている。

生分解性プラスチックとは、使用中は通常のプラスチックと同様に使用でき、使用後は 自然環境中に存在する微生物によって、水と二酸化炭素にまで分解され、自然界の炭素循 環サイクルに組み込まれるものである(Figs. 1-1 and 1-2)⁶⁸。生分解性プラスチックの分 解は以下のように起こる。まず、微生物が菌体外に分解酵素を分泌し、その菌体外分解酵 素が材料表面に結合し、表面の高分子鎖を加水分解によって切断して低分子量化合物(有 機酸、糖など)を生成する。次に、分解生成物は微生物の菌体内に取り込まれ、さまざま な代謝経路を経て、各種の生体物質の合成やエネルギー生産に用いられ、好気的環境下で 二酸化炭素に変換される。このような働きを持つ分解微生物は、海水、湖水、土中など自 然環境中に広く分布している⁶⁹。

生分解性プラスチックの大きな特徴として、従来のプラスチックと同様に、マテリアル リサイクルやケミカルリサイクルも可能であるが、バイオリサイクル(メタンガス化、コ ンポスト化=堆肥化)が可能である点があげられる^{7,10}。特に、食品包装分野においては、 夾雑物除去に手間がかかるため、バイオリサイクル内での処理が最も効果的な用途といえ る。2005 年に開催された 2005 年日本国際博覧会(愛称;愛・地球博)においても、フー ドコート内での食器やゴミ袋に生分解性プラスチックが導入され、使用後は生ゴミと一緒 にコンポスト化し、農地へ還元された^{10,11}。

環境調和型プラスチックとして期待される、この生分解性プラスチックはグリーンプラ という愛称で呼ばれている。これは、単なる愛称ではなく、国際的に合意された標準化試 験法によって測定し、生分解度の合格基準や、重金属などの含有物と分解中間産物の安全 性の基準をクリアした生分解性プラスチックだけが"グリーンプラ"のロゴとマークを使用 することができる(Fig. 1-3)^{7,10}。また、有機資源(植物等)由来物質を、プラスチック構 成成分として所定量以上含む、バイオマスプラスチック製品を「バイオマスプラ」として 認定し、シンボルマークの使用を許可する制度も発足している(Fig. 1-3)¹⁰。生分解性プ ラスチックは、自然環境中で分解されることから、自然界で使用される分野、回収やリサ イクルが難しい分野、そのための費用やエネルギーが大きな分野で利用が期待されている (Table 1-1)^{4,7,10}。

代表的な生分解性プラスチックを Table 1-2 に示す。この中で、化学合成系脂肪族ポリエ ステルには、化石燃料由来のものと植物由来のものとがあるが、環境配慮型のプラスチッ クの場合、石油系ではなく植物系の素材を活用するバイオマスプラスチックが望ましい。

現在、研究の盛んなバイオマスプラスチックはポリ乳酸(PLA)である。アメリカのカー ギル・ダウ社は、トウモロコシ畑に巨大なポリ乳酸生産プラントを建設し、国内外の企業 に提供を求めている。国内では、トヨタがサツマイモデンプンからポリ乳酸を製造するプ ラントを建設し、車体の一部として使用することに成功し、富士通がノートパソコンの一 部に使用したり、ソニーがウォークマンの一部に使用するなど、日本においてもポリ乳酸 の汎用プラスチックとしての利用が進んでいる。しかしながら、ポリ乳酸の食料需給への 影響や加水分解と微生物分解の二段階分解のために分解が遅いこと、3 ステップ生産のた めに手間がかかること等の課題も抱えている^{7,12-14}。

Fig.1-1 生分解性プラスチックの生産と分解サイクル⁸⁾

Fig. 1-2 生分解性プラスチックが分解される様子。

Fig. 1-3 グリーンプラおよびバイオマスプラのロゴ¹⁰⁾

- Table 1-1
 生分解性プラスチックの用途例^{4,7,10)}
 - 1) 農林水産業用資材 マルチフィルム、移植用苗ポット、釣り糸、漁網など
 - 2) 土木建築資材 荒地・砂漠の緑化・工事用などの保水シート、 山間・海中などの回収困難な土木工事の型枠など
 - 3) 野外レジャー製品 釣り用品、登山用品など
 - 4) 食品包材

生鮮食品用のトレー、インスタント食品・ファーストフードの容器、 弁当箱など

- (衛生用品 紙おむつ、生理用品など
- 6) 日用雑貨 ゴミ袋、コップ、歯ブラシ、ケースなど
 7) 生体機能材料
- 手術用縫合糸、骨片接合用スクリューなど
- Table 1-2
 生分解性プラスチックの主な種類^{4,7,10)}
 - 1) 微生物系
 - ・バイオポリエステル (P(3HB)など)
 - ・バクテリアセルロース
 - ·微生物多糖
 - 2) 化学合成系
 - ・脂肪族ポリエステル(ポリカプロラクトン,ポリブチレンサクシネート, ポリ乳酸など)
 - ・ポリビニルアルコール
 - ・ポリアミノ酸類
 - 3) 天然系
 - ・キトサン/セルロースでんぷん
 - ・酢酸セルロース
 - 4) 複合物系
 - ・デンプン/脂肪族ポリエステル
 - ・デンプン/ポリビニルアルコール

多くの微生物は、エネルギー貯蔵物質として菌体内に生分解性高分子の一種であるポリ ヒドロキシアルカン酸(PHA)を合成・蓄積する。1926年にフランスのLemoigne¹⁵⁾によ り、*Bacillus megaterium*からポリ((*R*)-3-ヒドロキシブタン酸)(P(3HB))が発見され、1960 年代から1970年代にMerrickとDoudoroff¹⁶⁾によって熱可塑性を有し、合成プラスチック 原料と同様に利用が可能であることが明らかにされた。現在までに200種類以上の微生物 が、ある種の栄養源(窒素源やリン源)欠乏条件下にて多様な炭素源からさまざまなモノ マー組成からなるPHAを合成・蓄積することが知られている¹⁷⁾。そして、外部からの炭 素供給が不足すると分解して生命活動のエネルギー源とする。すなわち、植物や動物にお けるデンプンや脂肪と同じ役割を有する、微生物にとっての有機炭素の貯蔵物質である。

1974 年、米国農務省研究所の Wallen と Rohwedder は活性汚泥から共重合ポリエステル を発見し、これを契機にさまざまな自然環境から共重合ポリエステルが検出され、自然界 の微生物が共重合ポリエステルを合成していることが示された^{18,19)}。また、1981 年、イギ リスでは、ICI 社が水素細菌 *Ralstonia eutropha*(旧名 *Alcaligenes eutrophus*)を宿主として、 炭素源にグルコースとプロピオン酸を与えることで、3HB と(*R*)-3-ヒドロキシ吉草酸(3HV) とのランダム共重合体 P(3HB-*co*-3HV)を合成することに成功し、これは、かつて"Biopol" の商標で市販されていたが、現在では、Biopol の事業権はアメリカの Metabolic 社に継承さ れている^{10,19,20}。その後、土肥らは、水素細菌を宿主として、炭素源として与えるブタン 酸とペンタン酸の比を変えることによって、3HV の分率が 0~95 mol%の広い組成範囲の ランダム共重合体を合成することができると報告した²¹⁾。

PHA は優れた生分解性があり、好気、嫌気、コンポストいずれの条件下でも分解することがわかっている。また、PHA のようなバイオポリエステルは 180°C 前後で融ける性質をもっており熱可塑性のプラスチックである。このように「融ける」という性質をもつ天然高分子は、バイオポリエステルの他にはなく、押出、射出、ブロー、紡糸などの多様な成形により、食品包装容器、衛生用品、農林水産用資材、繊維、紙製品のコーティング材などの多くの用途への使用が期待されている^{10,22)}。

PHA 生産菌は、そのポリエステルを構成するモノマーユニットの構造により、大きく2 つに分類される(Fig. 1-4)²⁰⁾。グループ1は、炭素数3~5の短鎖長(short-chain-length) の(*R*)-3-ヒドロキシアルカン酸(3HA)からなるポリエステル(scl-PHA)を合成するもの

で、モノマーユニットを構成する主成分は 3-ヒドロキシブタン酸 (3HB) ユニットである。 代表的なものにポリ-(*R*)-3-ヒドロキシブタン酸 (P(3HB)) を合成する *Ralstonia eutropha* が あげられる。グループ2は、炭素数 6~14の中鎖長 (medium-chain-length) の 3HA をモノ マーユニットとするポリエステル (mcl-PHA) を合成するもので、主なモノマーユニット 構成成分は、(*R*)-3-ヒドロキシオクタン酸 (3HO) と(*R*)-3-ヒドロキシデカン酸 (3HD) で ある。これらのモノマーユニットの組成はその菌が有する PHA 重合酵素とモノマーユニ ット供給系酵素の基質特異性に支配される。rRNA ホモロジーグループ I に属する *Pseudomonas* 属細菌の多くは、グループ2 に分類される。

P(3HB)の生合成経路は、β-ケトチオラーゼ (PhbA)、NADPH 依存性アセトアセチル CoA リダクターゼ (PhbB)、PHB 重合酵素 (PhbC) の3つの酵素反応からなる (Fig. 1-5)。ま ず、2分子のアセチル CoA が PhbA の作用により縮合し、アセトアセチル CoA となる。次 に、PhbB の作用で、(*R*)-3-ヒドロキシブチリル CoA ((*R*)-3HB-CoA) へと還元され、最後 に、PhbC により重合され、P(3HB)が合成される。これら3つの酵素遺伝子は、*R. eutropha* では *phbCAB* オペロンを形成している²⁰⁾。

β-ケトチオラーゼは、それらの基質特異性によって2つのグループに分けられる。1つ 目のグループは、炭素数4~16の3-ケトアシル CoA に広く基質特異性を示すもので、主に β酸化に関与している。もう1つのグループは、炭素数3~5のβ-ケトアシル CoA にのみ活 性を示すものである。*R. eutropha*は、PhbA 以外に少なくとも2つのβ-ケトチオラーゼ(BktB および BktC)を有していることが知られている^{6,20}。

一方、mcl-PHA は、*de novo* 脂肪酸合成あるいはβ酸化を経て合成される。脂肪酸を炭素 源とした場合、β酸化を経由し、中間代謝産物(*S*)-3-ヒドロキシアシル CoA((*S*)-3HA-CoA) が生成されるが、PHA 重合酵素(中鎖長特異的 PHA 重合酵素)は(*R*)体の 3-ヒドロキシア シル CoA((*R*)-3HA-CoA)を基質とするため、(*S*)-3HA-CoA は基質となり得ない。そこで、 β酸化を経て(*R*)-3HA-CoA が生成される分岐経路として、(*R*)体特異的エノイル CoA ヒドラ ターゼ(PhaJ)、エピメラーゼ、3-ケトアシル CoA リダクターゼの 3 経路が考えられるが、 完全な解明には至っていない^{20,23,24})。*Aeromonas caviae* では、脂肪酸β酸化系の中間体であ るエノイル CoA から(*R*)体特異的エノイル CoA ヒドラターゼ (PhaJ) によって(*R*)-3HA-CoA が供給される^{23, 25, 26}。また、*Pseudomonas* 属細菌でも *phaJ* 遺伝子が発見されており、(*R*) 体特異的エノイル CoA ヒドラターゼ (PhaJ) が有力なモノマー供給系酵素であると考えら れる^{20,27,28})。*R. eutropha* においても、ゲノム情報から、*A. caviae* や*P. aeruginosa* の(*R*)体特

異的エノイル CoA ヒドラターゼ遺伝子(*phaJ_{Ac}、phaJ1_{Pa}、phaJ2_{Pa}、phaJ3_{Pa}、phaJ4_{Pa})のホ モログが見いだされており、特に、<i>R. eutropha の phaJ4a_{Re}、phaJ4b_{Re} および phaJ4c_{Re} 遺伝子 を導入した組換え株による共重合 PHA の合成が報告されている²⁹⁾。*

糖を炭素源とした場合、生成したアセチル CoA がアセチル CoA カルボキシラーゼによ ってマロニル CoA となる。次に、ACP マロニルトランスフェラーゼにより、CoA がアシ ルキャリヤータンパク質 (ACP) に置き換わり、マロニル ACP となる。さらに、*de novo* 脂肪酸合成経路を経て、(*R*)-3HA-ACP となる。そして、3-ヒドロキシアシル ACP:CoA ト ランスフェラーゼ (PhaG) の作用により、(*R*)-3HA-CoA となる。このようにして生成され た (*R*)-3HA-CoA は、PHA 重合酵素によって重合され、P(3HA)が合成される。このグルー プの微生物が持つ PHA 重合酵素 は、幅広い基質特異性を有し、炭素数 6~14 までの (*R*)-3HA-CoA に活性を示す (Fig. 1-5) ^{20,30-32)}。

微生物菌体内に蓄積した PHA は菌体を酵素リゾチームや次亜塩素酸で処理すると、細胞壁が溶解するために、顆粒として取り出すことができる。また、クロロホルム抽出法によっても、微生物菌体内から高純度で PHA を取り出すことが可能であり、水酸化ナトリウムやエタノールを用いた PHA 抽出も報告されている^{22,33,34}。このようにして、取り出された PHA は自然環境中に存在する微生物が分泌する酵素によって完全に分解されるため、環境に負荷を与えない高分子材料として注目され、実用化に向けての開発が進んでいる。また、PHA は微量ながら人の生体内にも存在し、生体適合性を有すため、生体機能材料(バイオマテリアル)としても注目され、生物・医学領域への展開も期待されている²⁰。

Fig. 1-4 P(3HB)とP(3HA)の構造式

R. eutropha

Pseudomonas 属

Fig. 1-5 P(3HB) と P(3HA) の生合成経路

1-4 Pseudomonas sp. 61-3 が合成する PHA

Pseudomonas 属細菌は、グラム陰性菌であり、好気性化学合成従属栄養細菌である。1983 年、*P. olevorans* がオクタンを炭素源として P(3HA)を蓄積することが報告された³⁵。*P. olevorans* は脂肪酸や炭化水素を炭素源とすると P(3HA)を蓄積するが、糖を炭素源とした 場合は PHA を合成しない。これは、*P. olevorans* では *phaG* 遺伝子のプロモーターが欠損 していることによる³¹⁾。一方、*P. putida* や *P. aeruginosa* は、糖を炭素源とした場合でも P(3HA)を合成する。*Pseudomonas* 属細菌の *pha* locus には、2 つの PHA 重合酵素遺伝子 (*phaC1* および *phaC2*)、細胞内 PHA 分解酵素遺伝子 (*phaZ*)、機能不明の遺伝子 (*phaD*) が存在している³⁰。

2 つの PHA 重合酵素遺伝子 phaCl および phaC2 は、アミノ酸レベルで高い相同性を示 すものの、同じ locus 上にこの 2 つの PHA 重合酵素遺伝子が存在する理由についてはさま ざまな議論がなされているが、明確でない。これまでに、2 つの重合酵素の基質特異性に ついて、ほとんど同じ傾向を示すと報告したのは P. aeruginosa と Pseudomonas sp. 61-3 の みであり ³⁶⁻³⁸、近年では、2 つの違いが報告されている例が多い ^{39,40}。 Pseudomonas sp. 61-3 の みであり ³⁶⁻³⁸、近年では、2 つの違いが報告されている例が多い ^{39,40}。 Pseudomonas sp. 61-3 の PhaC1 は、基質特異性が低いことから、炭素数 4~12 までの幅広いモノマーを取り込む ことができる。一方、PhaC2 については、phaC2 遺伝子と phaD 遺伝子を挿入したプラス ミド、および phaC2 遺伝子と R. eutropha 由来の phbAB 遺伝子を挿入したプラスミドを、 R. eutropha の PHA 合成能欠損株および Pseudomonas sp. 61-3 の phbC 遺伝子破壊株に導入 したところ(湯之上,未発表)、PhaC1 と同様に炭素数 4~12 のモノマーを取り込むことが できることが明らかとなっている³⁸。また、Pseudomonas sp. 61-3 では、phaC1 と phaC2 は 1 つの転写産物として、あるいは別々の転写産物として転写されていることが示唆され(佐 志,未発表)、PhaC1 タンパク質が主要な PHA 重合酵素として機能しており、PhaC2 タン パク質はその補足的な役割を担っていると予想されている⁴¹。

Pseudomonas sp. 61-3 は、他の*Pseudomonas* 属細菌とは異なり、糖や脂肪酸を炭素源として、炭素数4の3HB モノマーユニットからなる P(3HB)ホモポリマーと、炭素数4~12の3HA モノマーユニットからなるランダム共重合ポリエステル P(3HB-co-3HA)の2 種類のPHA を菌体内に合成・蓄積する珍しい細菌である⁴²⁴⁵。本菌は、窒素制限下でP(3HB)ホモポリマーを合成し、窒素が完全に枯渇した条件下でP(3HB)とP(3HB-co-3HA)の2 種類のポリエステルを合成する (Fig. 1-6)^{43,45}。これまでに、PHA 生合成に関与する遺伝子は、P(3HB)

の合成に関与する *phb* locus と P(3HB-*co*-3HA)の合成に関与する *pha* locus がそれぞれ同定 されている(Fig. 1-7)^{38,41)}。また、*Pseudomonas* sp. 61-3 における糖類や脂肪酸からのポリ エステル生合成経路を Fig. 1-8 に示す。

鎖長の短い炭素数4の3HBが重合した P(3HB)ホモボリマーは、硬くて脆い性質を有し、 一方、炭素数6~14の3HAが重合した P(3HA)はアルモファス状でゴム弾性を示すため、 それぞれ単独では実用的なプラスチックとはならない⁴⁶⁾。しかしながら、3HB ユニットと 炭素鎖長の長い3HA ユニットとのランダム共重合ポリエステルは、その組成に応じて、丈 夫でしなやかな実用的なポリエステルの物性を示すと考えられた。そこで、*Pseudomonas* sp. 61-3のPHB 重合酵素遺伝子 (*phbC*)を破壊し、P(3HB)合成能を欠損させ、P(3HB-co-3HA) のみを合成する *Pseudomonas* sp. 61-3 (*phbC*::*tet*)が作製されたが、合成された P(3HB-co-3HA) は、3HB 分率が 15~27%と低かった³⁸⁾。そこで、松崎らは、3HB 分率を高め、PHA の強 度を高めるために、*Pseudomonas* sp. 61-3 の PHA 重合酵素遺伝子 (*phaC1*)、*R. eutropha* 由 来のβ-ケトチオラーゼ遺伝子 (*phbA*)、アセチル CoA リダクターゼ遺伝子 (*phbB*)の3つ を導入した遺伝子組換え株をいくつか作製したところ、3HB 分率の高い P(3HB-co-3HA)の 合成に成功した^{47,48)}。特に、*Pseudomonas* sp. 61-3 (*phbC*::*tet*)/pJKSc54-*phab* 株が合成した P(94% 3HB-co-3HA)は、低密度ポリエチレン (LDPE) と似た物性を示す⁴⁷。

前述のように、*Pseudomonas* sp. 61-3 には、PHA 合成に関する遺伝子群が 2 つ存在して いる³⁸⁾。*pha* locus は、他の *Pseudomonas* 属細菌の *pha* locus と非常に相同性が高く、同様の 遺伝子が存在する。一方、*phb* locus は、P(3HB)合成のために必要な酵素 PhbB、PhbA、PhbC タンパク質の遺伝子が、*phbBAC* オペロンとして存在する。さらに、この *phbBAC* オペロ ンと逆向きに、推定転写調節遺伝子 *phbR* が存在している (Fig. 1-7)³⁸⁾。これまでの研究で、 β-ガラクトシダーゼ遺伝子 (*lacZ*)を用いたレポーターアッセイを行った結果、*phbR* 遺伝 子導入株において、*phbBAC* オペロンのプロモーター活性が高くなることから、PhbR は *phbBAC* オペロンの転写アクチベーターとして働くことが予想されている³⁸⁾。また、 *Pseudomonas* sp. 61-3 の *phbR* 遺伝子破壊株を、脂肪酸を炭素源として培養したところ、野 生株と比較して 3HB 分率の低い PHA が合成された (佐志,未発表)。加えて、LB 培地で グルコースを炭素源とした場合、野生株においては、P(3HB)ホモポリマーと 3HB 分率の 高い P(3HB-co-3HA)を合成するのに対して、*phbR* 遺伝子破壊株では、*phbBAC* 遺伝子が転 写されないために、P(3HB)が合成されず、PHA 蓄積率も低下する。また、MS 培地でグル コースを炭素源とした場合、野生株に比べて *phbR* 遺伝子破壊株では、合成された

P(3HB-co-3HA)共重合ポリエステルの 3HB 分率が低下する。このことからも、*Pseudomonas* sp. 61-3 において、3HB ユニットの主な供給源であり、P(3HB)の合成に関わる *phbBAC* オ ペロンの転写に *phbR* 遺伝子が必須であることがわかる³⁸⁾。

Fig. 1-6 Pseudomonas sp. 61-3 が菌体内に蓄積するポリエステル

Fig. 1-7 Pseudomonas sp. 61-3 のポリエステル生合成遺伝子クラスター

Fig. 1-8 Pseudomonas sp. 61-3 におけるポリエステル生合成経路

1-5 PHA 顆粒の特徴とPHA 顆粒結合タンパク質

PHA の形成機構については、少しずつ明らかになってきている。Gerngross らは、*R.* eutropha の PHB 重合酵素の抗体を用いた免疫細胞化学的手法により、顆粒表面における PHB 重合酵素の局在性について検討した⁵⁹。その結果、PHB 重合酵素は、PHA 非合成時 には菌体内に分散しているが、PHA が顆粒として蓄積され始めると PHB 重合酵素はポリ エステル顆粒の表面に局在することが明らかになった。このことは、PHB 重合酵素が PHA の重合反応を行いながら、顆粒の形成に作用することを示唆している。

PHA 顆粒表面には、顆粒と特異的に結合する顆粒結合タンパク質 (GAP; granule-associated protein) が存在する⁵⁹。これまでに、*R. eutropha* や *Pseudomonas* などの PHA 生産菌から GAP が単離され、それらのタンパク質をコードする遺伝子もクローニン グされている。GAP は、(1)PHA 重合酵素、(2)PHA 分解酵素、(3)phasin、(4)その他、 に分類される。phasin は、両親媒性のタンパク質で、PHA 生合成に関わっていることや phasin のコピー数が PHA 顆粒サイズに影響することが知られている⁶⁰⁻⁶²⁾。R. eutropha にお いて、phasin の構造遺伝子 phaP (phaP1) が同定されており、PhaP (PhaP1) を過剰に発現 させると、P(3HB)顆粒の大きさが小さくなることが報告されている⁶⁰。さらには、 *Rhodococcus rubber*⁵⁶⁾, Acinetobacter sp.⁶³⁾, Chromatium vinosum⁶⁴⁾, Bacillus megaterium ⁶⁵⁾および Paracoccus denitrificans⁶⁰においても、phaP 遺伝子が同定されている。また、P. denitrificans 由来の phaR 遺伝子が PHB 顆粒から単離され、phaP 遺伝子の発現を抑制すると予想されて いる⁶⁰。また、P. olevorans においては、PhaF が PHA 顆粒と DNA の両方に結合する性質 を有しており、PHA顆粒非存在時にはPHA生合成遺伝子のプロモーター領域に結合して、 PHA 生合成系遺伝子の発現を抑制している。そして、PHA 顆粒が蓄積されると、PhaF や PhaI は PHA 顆粒と結合し、そのことによって前述の抑制が解除されて PHA 合成系遺伝子 の発現が活性化される(Fig. 1-9)⁶⁷。上述のように、GAPは、PHA 顆粒の安定性に関わる だけでなく、PHA 生合成遺伝子の転写調節に関与しているものや PHA 重合酵素の活性を 高めるものも知られており[®]、GAPの詳細な機能解析が必要である。

Pseudomonas sp. 61-3 においても、合成する 2 種類の PHA、P(3HB)と P(3HB-co-3HA)の それぞれの顆粒に特異的に結合する GAP が存在する(Fig. 1-10)⁴¹。P(3HB)顆粒には、分 子量 24 kDa のタンパク質(GA24)と分子量 48 kDa のタンパク質(GA48)が主に特異的 に結合し、P(3HB-co-3HA)顆粒には、分子量 18 kDa のタンパク質(GA18)と 36 kDa のタ ンパク質(GA36)が特異的に結合する。それぞれの N 末端アミノ酸配列を Table 1-3 に示 す。GA18 および GA36 については、それぞれ PhaI および PhaF として同定され、それら

の遺伝子は pha クラスター上に存在する⁴¹⁾。GA48 は、膜結合型タンパク質(porin)が非 特異的に結合していると考えられているが、GA24 に関しては同定されていない。また、 これらの GAP の局在性が何に起因して PHA 顆粒に結合するかについても、明らかとなっ ておらず、その要因として、PHA のモノマー組成を認識するものと PHA 重合酵素との相 互作用が考えられるが、いまだ解明されていない。

Fig. 1-9 P. olevorans における pha 遺伝子群の制御モデル⁶⁷⁾

M : LMW Marker 1: P(3HB-co-3HA)-GAP 2: P(3HB)-GAP

Fig. 1-10 Pseudomonas sp. 61-3の2種類のPHA 顆粒に結合する GAPの SDS-PAGE

Table 1-3 N末端アミノ酸配列
$GA18: NH_2-AKVSLKKEIDVQPTTLSEVKVTAXKIXLAG \cdot \cdot \cdot (PhaI_{Ps})$
GA36 : NH_2 -AGKKNTEKEGSSXIGKV · · · (Pha F_{Ps})
GA24 : NH ₂ -(M)TFFNLEKLQDAQKANLDLLQQISGKIFASVEQLT · · ·

1-6 Ralstonia eutropha が合成する PHA

Ralstonia eutropha は、グラム陰性菌であり、化学合成独立栄養細菌の一種である。増殖 が速く、PHA 蓄積能が非常に高いため、現在広く研究されている。R. eutropha は糖や二酸 化炭素を炭素源とした場合、P(3HB)を合成する。P(3HB)の生合成経路は、本章 1-3 で述べ たように、β-ケトチオラーゼ (PhbA)、NADPH 依存性アセトアセチル CoA リダクターゼ

(PhbB)、PHB 重合酵素 (PhbC) の 3 つの酵素反応からなり、これら 3 つの酵素遺伝子は、 *R. eutropha* においては *phbCAB* オペロンを形成している²⁰⁾。このように、*R. eutropha* の *phbCAB* オペロンにはタイプ I の PHA 重合酵素遺伝子 (*phbC*) と二量化系酵素遺伝子 (*phbAB*) が存在しており、*phbCAB* オペロンの約 4.6 kb 下流には、PhbA よりも幅広い基 質特異性を有するβ-ケトチオラーゼ遺伝子 (*bktB*) が存在する。この *bktB* 遺伝子は、炭素 数 5 の 3HV ユニットを含む共重合ポリエステル、P(3HB-co-3HV)の効率的合成に重要な役 割を担っている^{20,69)}。また、本菌の PhbC は短鎖長の 3-ヒドロキシアシル CoA、特に、(*R*)-3ヒドロキシブチリル CoA(3HB-CoA)に特異的である。優れた物性を有する PHA を微生物によって発酵合成するためには、その分子構造や組成を自由にコントロールすることが 重要である。*R. eutropha* を宿主として、脂肪酸を炭素源として培養すると、共重合体が合成されるが、糖や二酸化炭素を炭素源して培養すると、P(3HB)ホモポリマーのみが合成される。この P(3HB)は非常に規則正しい分子構造をもつために、結晶性が高く、その結果、硬くて脆い性質を有し、実用性に乏しい材料である。そこで、さまざまな炭素源を用いることで、*R. eutropha* で P(3HB-co-3HV)や P(3HB-co-4HB)(4HB,4-ヒドロキシブタン酸(C₄))の生合成が行われてきた^{21, 20}。また、*A. caviae* の PHA 重合酵素遺伝子を導入した組換え*R. eutropha* で、脂肪酸から乾燥菌体重量あたり約 80~90 wt%の P(3HB-co-3HHx)(3HHx,3-ヒドロキシへキサン酸(C₆))を合成させることに成功している⁷⁰。さらには、*Pseudomonas* sp. 61-3 の幅広い基質を利用できる PHA 重合酵素遺伝子(*phaC1*)と*R. eutropha* の*phbAB* 遺伝子を導入した組換え*R. eutropha* で、植物油から炭素数 4~12 の 3HA ユニットからな り、3HB 分率が高い、新しいモノマー組成比からなる共重合ポリエステル、P(3HB-co-3HA) の合成にも成功している^{20,49}。このようなモノマー組成のポリエステルは、丈夫な高分子 材料として期待される。

これまでの研究で、物性の優れた共重合体を取得するために、低基質特異性 PHA 重合 酵素遺伝子である *Pseudomonas* sp. 61-3 の *phaCl* を *R. eutropha* PHB4 に導入した組換え株 を作製し、糖を炭素源として培養したが、P(3HB)ホモポリマーしか合成されなかった⁴⁸。 これは、*R. eutropha* がβ酸化からの 3HA ユニット供給経路を有しているが、脂肪酸合成経 路からの 3HA ユニット供給経路を有していないことが原因であると考えられた。また、 *R. eutropha* は、化学合成独立栄養細菌であるので、二酸化炭素を唯一の炭素源として物性 の優れた PHA が合成できれば、高度環境調和型の PHA 生産システムを構築できるといえ る。このように環境問題にも大きく貢献することができるため、大いに注目される宿主と いえる。

このように、遺伝子組換え技術を応用することによってポリエステルの生産量を向上させたり、優れた物性の共重合ポリエステルを生合成できるようになってきた。

また、近年では、*R. eutropha* の PHB 生合成遺伝子を利用し、実用的な PHA を合成する 研究も行われている。例えば、*R. eutropha* の PHB 生合成遺伝子を大腸菌に導入したある組 換え株は、従来では合成できなかった分子量 2000 万以上の超高分子量 P(3HB)を合成した ことが報告されている^{71,72}。このような超高分子量 P(3HB)は、延伸熱処理を施すことによ

り、ナイロン 6,6 などの汎用高分子と同程度にまで物性が改善したという報告があり、研 究が進められている。

1-7 二酸化炭素からの PHA 生産

近年、温室効果ガスによる地球温暖化の問題が深刻化していることは世界全体の認識と なりつつある。温暖化の原因は、①化石燃料の過剰使用が8割、②森林破壊が2割と推定 されている。すでに現在においても、温暖化の影響は生態系にも現れ、米の生育不良や品 質低下、漁獲量の減少、サンゴ礁の白化などが深刻化している。この昨今の地球環境問題 の現状を受け、国際的にも動きがあり、1997年に締約された京都議定書において、日本は 2008年から2012年までの4年間に6%の二酸化炭素削減のノルマ達成を課せられた^{8,73}。 2011年には、気候変動枠組条約第17回締約国際会議(COP17)が開催され、新興国を含 む温室効果ガスの主要な排出国が排出削減義務を負う、京都議定書に代わる新たな国際的 枠組への工程に関する国際合意がなされた⁷⁴。このことから、地球温暖化防止に向けた温 室効果ガスの削減が大きな課題となっている。これまでに、生分解性プラスチックは廃棄 物や環境汚染などの問題の解決策として開発されてきた。それに加え、現在は温室効果ガ スの一つである二酸化炭素の削減という背景から、大気中の二酸化炭素を直接あるいは間 接的に利用して生分解性プラスチックを生産できれば、二酸化炭素の排出を抑制できると 考えられ、さまざまな研究がなされている。二酸化炭素を出発原料とする高分子生産プロ セスとして3 つの方法があげられる(Fig.1-11)⁷⁵。

間接的に二酸化炭素を利用する例として、植物由来のバイオマス(糖や植物油)を炭素 源に用いて微生物から生産されるバイオマスプラスチックがあげられる。このバイオマス を用いてのプラスチックの生産工程は3ステップ生産法または2ステップ生産法のいずれ かにあたる。3ステップ生産法は、植物によって大気中の二酸化炭素をデンプンなどの糖 へと変換し、これを原料として微生物発酵によりモノマー生産を行い、そのモノマーを用 いて化学合成によりポリマーを合成する方法である。2ステップ生産法は、微生物により 糖や植物油からポリマーを生産する方法である。2ステップ生産法は、3ステップ生産法に 比べて、生産工程が簡略化でき、低コスト化が期待できる^{75,76}。しかしながら、さらなる 高生産性と低コスト化を目指す方法として二酸化炭素から直接ポリマーを生産させる1ス

テップ生産法がある。近年、遺伝子組換え植物により PHA を合成する技術開発が進めら れている。代表的な例として、1992 年のシロイヌナズナを用いた P(3HB)生産が挙げられ る⁷⁷⁾。初めは、その生産量もごくわずかであったが、植物細胞内で脂肪酸合成などを行う 細胞小器官のプラスチドに P(3HB)生合成酵素を局在化させることにより、乾燥重量あたり 14%の P(3HB)が蓄積されることが報告されている⁷⁸⁾。さらに葉緑体に局在化させることに より、乾燥重量の約 40% も P(3HB)を蓄積するが、植物体の成長が著しく悪くなるという報 告もある⁷⁹⁾。組換え植物体を用いての PHA 生産の研究は始まったばかりであり、実用化 には克服すべき多くの課題が残っている。

一方、*R. eutropha* は、二酸化炭素からすべての生体炭素構成成分を合成し、二酸化炭素 を固定することのできる化学合成独立栄養細菌である。そこで、私たちは、*R. eutropha* に 着目し、*R. eutropha* の組換え株を用いて、二酸化炭素から好ましいモノマー組成を有する 丈夫で実用的な PHA を合成しようと試みている。これまでに、*R. eutropha* PHB4 に *phaCl*_{Ps} 遺伝子と *phbAB*_{Re}遺伝子を *lac* プロモーターで発現させるプラスミドを導入した組換え株 で二酸化炭素を炭素源として P(3HB)を 9~13 wt%合成することに成功している(稲田,未 発表)。二酸化炭素からの PHA 生産過程では、水素をエネルギー源として使用するため危 険であることや培養条件が確立されていないなどの実用化に向けての課題も多くある。し かしながら、二酸化炭素からの PHA 合成が実用化できれば、高度環境調和型 PHA 生産シ ステムを構築できると考えられる。

Fig. 1-11 二酸化炭素からの生分解性高分子の生産プロセス⁷⁵⁾

1-8 大腸菌を宿主とした共重合ポリエステルの合成

大腸菌は、増殖が速く、遺伝学的・生化学的性質も明らかになっている上に、菌体内 PHA 分解酵素を有さない非 PHA 生産菌であることから、PHA 生産における宿主として期待で きる。これまでに、大腸菌を宿主として、3HV や 4HB、乳酸、中鎖長 3HA をセカンドモ ノマーユニットとして含み、3HB ユニットをベースとした共重合ポリエステルが糖や脂肪 酸を炭素源として合成されている^{26,80,87)}。福居らは、*A. cavie*の PHA 重合酵素遺伝子 (*phaC*) とともに(*R*)体特異的エノイル CoA ヒドラターゼ遺伝子 (*phaJ*)を導入し、大腸菌を宿主 としてβ酸化を介した P(3HB-co-3HHx)の生合成について報告している²⁶。また、Park と Lee は、β酸化において 3-ケトアシル CoA およびアシル CoA を供給する大腸菌の *fadA* および *fadB* 遺伝子を破壊した株を作製し、グルコン酸とデカン酸から 3HB 分率が 95 mol%の P(3HB-co-3HA)の合成に成功している⁸¹⁾。さらに、*R. eutropha* の PhbA および PhbB ととも に、基質特異性の異なる PHA 重合酵素 (*R. eutropha* 由来 PhbC、*Aeromonas hydrophila* 由来 PhaC あるいは*P. putida* 由来 PhaC2) と(*R*)体特異的エノイル CoA ヒドラターゼ (*A. hydrophila* 由来 PhaJ あるいは *P. putida* 由来 PhaJ1 および PhaJ4)を共発現させることによって、グリ セロールとドデカン酸から、炭素数が 4~10 のさまざまなモノマー組成を有する P(3HB-co-3HA)共重合ポリエステルも合成されている⁸⁴⁾。大腸菌を宿主として、糖を炭素 源とした PHA 合成については、Chen らの報告があり、スレオニン生合成あるいは分解経 路に関わる遺伝子を過剰に発現あるいは破壊することによって、キシロースからの P(3HB-co-3HV)の合成に成功している⁸³⁾。また、シトラマル酸経路とスレオニン経路を組 み合わせることによって、グルコースから 3HV 分率の高い P(3HB-co-3HV)が合成されてい る⁸⁶⁾。

これまで 3-ヒドロキシアシル ACP:CoA トランスフェラーゼであると報告されていた PhaG は、実際には、3-ヒドロキシアシル ACP チオエステラーゼとして機能していること が近年示唆された⁸⁸⁾。したがって、PhaG は PHA 重合酵素の基質となる(*R*)- 3HA-CoA を生 成するよりもむしろ、(*R*)-3-ヒドロキシアルカン酸を生成するため、脂肪酸合成経路を介し て中鎖長 3HA ユニットを PHA 鎖中へ取り込むためには、(*R*)-3HA-CoA リガーゼが必要で あると考えられる。また、Wang らは、*P. olevorans* 由来の AlkK と相同性の高い *P. putida* KT2440 の PP0763 遺伝子の翻訳産物が(*R*)-3HA-CoA リガーゼ活性を有していることを明ら かにした⁸⁸⁾。さらに、*Pseudomonas* sp. 61-3 の改変 PHA 重合酵素 (PhaC1(STQK))⁸⁹⁾、PhaG、 PhbA、PhbB および PP0763 遺伝子の翻訳産物を共発現させることによって、グルコースを 唯一の炭素源として中鎖長 3HA ユニットが導入された P(3HB-co-3HA)の合成に成功して いる⁸⁵⁾。Tappel らのこの報告が糖からの P(3HB-co-3HA)生合成における(*R*)-3HA-CoA リガ ーゼに関する初めての報告であり、大腸菌を宿主として、脂肪酸合成経路を介した中鎖長 3HA ユニットを含む P(3HB-co-3HA)共重合ポリエステルの合成に関する報告はこの一例の みである⁸⁵⁾。

1-9 研究の目的

多くの微生物がエネルギー貯蔵物質として菌体内に合成・蓄積するポリヒドロキシアル カン酸(PHA)は環境調和型プラスチックとして期待されている。PHAの実用化のために は、PHAの物性を改善し、低コストで生産するシステムを構築することが重要である。し たがって、PHA生合成関連遺伝子の詳細な解析が必須であり、それにより得られた知見を 基に、その分子構造や組成を自由にコントロールする必要がある。また、炭素源としてバ イオマス資源などの安価な素材を用いることが重要である。

PHA は大きく分類すると、炭素数 4 の 3HB をモノマー単位とするポリヒドロキシブタン酸 P(3HB)と、炭素数 6~14 の中鎖長 3HA をモノマー単位とする P(3HA)に分類される。 P(3HB)は硬くて脆い性質を示し、一方、P(3HA)はアモルファスでゴム弾性を示すため、それぞれ単独では実用的なプラスチックとはいえない。しかしながら、3HB ユニットと 3HA ユニットのランダム共重合体 P(3HB-co-3HA)を合成させ、その組成比を変化させることによって、物性の優れた実用的な PHA を合成することが可能となる。そこで、本研究では、二酸化炭素や安価な糖からの物性の優れた実用的な生分解性共重合ポリエステルを合成することを目的とした。そのために、PHA 生合成遺伝子の詳細な解析を行い、各酵素の特性・特徴について明らかにすることや生合成における分子解析を試みた。また、これまでに本研究や他の先行研究における PHA 生合成遺伝子の詳細な解析によって得られた知見を基に、遺伝子組換え菌を作製し、代謝制御を行うことで、二酸化炭素や糖を炭素源として物性の優れた共重合ポリエステルの効率的な合成を試みた。加えて、合成されたポリエステルの物性評価や熱力学的特性についても調べた。

Pseudomonas sp. 61-3 は、炭素数4の3HBからなるP(3HB)ホモポリマーと、炭素数4~ 12の3HAからなるP(3HB-co-3HA)共重合ポリエステルの2種類のPHAを合成する⁴²⁴⁵。 Pseudomonas sp. 61-3のP(3HB)とP(3HB-co-3HA)のPHA顆粒にはそれぞれ特異的に結合す るタンパク質Granule-associated protein (GAP)が存在する。PHA顆粒にはポリエステル重 合酵素以外に、分子量18kDaのGA18、36kDaのGA36、24kDaのGA24、48kDaのGA48 (porin)が結合することが明らかとなっており、GA18およびGA36の遺伝子は、phalお よびphaFとそれぞれ同定されているが⁴¹⁾、GA24遺伝子は同定されていない。また、GAP のポリエステルへの局在性が何に起因しているのかについては不明である。そこで、第二 章では、GA24遺伝子およびその周辺領域のクローニングを行った。さらには、さまざま なモノマー組成の共重合PHAを合成するPseudomonas sp. 61-3の組換え株を作製し、それ ぞれのPHA顆粒に結合するGAPの局在性について検討した。

第三章では、*Pseudomonas* sp. 61-3 の P(3HB)の生合成に関わる *phb* locus 上の *phbR* 遺伝 子と *phbP* 遺伝子の間に新たに見いだされた約3kb の機能不明 ORF の推定翻訳産物の機能 解析を試みた。

第四章では、これまでの PHA 生合成遺伝子の解析により得られた知見を活かした微生物育種の応用例として、組換え微生物による生分解性共重合ポリエステルの生合成を行っ

た。*R. eutropha*は、二酸化炭素を固定することのできる化学合成独立栄養細菌であり、組 換え*R. eutropha*を作製し、二酸化炭素から優れた物性を有する共重合ポリエステルが合成 できれば、高度環境調和型 PHA 生産システムを構築できると考えられる。しかしながら、 *R. eutropha*は、糖や二酸化炭素を唯一の炭素源とした場合、P(3HB)ホモポリマーしか合成 しない。そこで、*Pseudomonas* sp. 61-3 の低基質特異性 PHA 重合酵素遺伝子(*phaC1*)、3-ヒドロキシアシル ACP:CoA トランスフェラーゼ遺伝子(*phaG*)および*R. eutropha*のβ-ケ トチオラーゼ遺伝子(*phbA*)、アセトアセチル CoA リダクターゼ遺伝子(*phbB*)を導入し た組換え株を作製した。そして、従属栄養あるいは独立栄養条件下にて培養した際に合成 された PHA の蓄積率およびモノマー組成について調べた。しかしながら、PhaG は、トラ ンスフェラーゼ活性よりもチオエステラーゼ活性が高いことが最近報告された⁸⁹。したが って、中鎖長 3HA ユニットを供給するためには、PhaC1 および PhaG に加えて、(*R*)-3HA-CoA リガーゼが必要であるといえる。

そこで、第五章では、P. putida KT2440 の PP0763 遺伝子の翻訳産物が(R)-3HA-CoA リガ ーゼ活性があるとの報告を受け⁸⁸⁾、PP0763 遺伝子と相同性の高い P. aeruginosa PAO1 の PA3924 遺伝子をクローニングした。PHA 重合酵素とともに PA3924 遺伝子およびモノマ ー供給系に関わる酵素遺伝子を増殖が速く、PHA 分解酵素を有さない大腸菌に導入した組 換え株を作製し、糖から物性の優れた共重合ポリエステルを効率よく合成させることを試 みた。

第六章では、本論文で得られた結果を総括する。

引用文献 第一章

- 1. 日本プラスチック工業連盟(http://www.jpif.gr.jp/)
- 2. 一般社団法人プラスチック循環利用協会(http://www.pwmi.or.jp/)
- 本多淳裕,進藤秀夫,柳澤孝成,石倉豊,寺本俊郎,池田文三郎,村田勝英, 川口一,元田欽也,池澤健治,久保直紀,上田勉,犬飼重平,浅田俊彦,小島昭,柏木 秀博,杉浦基之,高橋正夫(2000)プラスチックリサイクル技術、シーエムシー出版
- 白石信夫,谷吉樹,工藤謙一,福田和彦(2000)実用化進む生分解性プラスチック 持続・循環型社会の実現に向けて、工業調査会
- 5. プラスチックリサイクル研究会編(2000)最新プラスチックのリサイクル 100 の知識, 東京書籍
- Madison, L.L. and Huisman, G.W. (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. *Microbiol. Mol. Biol. Rev.*, 63, 21-53
- 7. 生分解性プラスチック研究会編(2004)生分解性プラスチックの本,日刊工業新聞社
- 8. ブッカーズ編 (2008) バイオプラスチックの高機能化・再資源化技術, エヌ・ティー・ エス
- 9. 土肥義治(1996) 生分解性プラスチック, 化学と教育, 44, 441-443
- 10. 日本バイオプラスチック協会(http://www.jbpaweb.net/)
- 11. 愛・地球博公式ウェブサイト(http://www.expo2005.or.jp/jp/index.html)
- 12. 田口精一(2004) バイオプラスチック生産研究の国際動向, 化学経済, 3月号, 32-38
- 13. 科学技術動向(2006年, 8月)(http://www.nistep.go.jp/achiev/ftx/jpn/stfc/stt065j/index.html)
- 14. トヨタ自動車株式会社公式企業サイト(http://www.toyota.co.jp/)
- Lemoigne, M. (1926) Produits de dehydration et de polymerization de l'acide β-oxybutyric. *Bull.* Soc. Chim. Biol., 8, 770-782
- Merrick, J.M. and Doudoroff, M. (1961) Enzymatic synthesis of poly-β-hydroxybutyric acid in bacteria. *Nature*, **189**, 890-892
- Anderson, A.J and Dawes, E.A. (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. *Microbiol. Rev.*, 54, 450-472

- Wallen, L.L. and Rohwedder, W.K. (1974) Poly-β-hydroxyalkanoate from activated sludge. *Environ. Sci. Technol.*, 8, 576-579
- 19. 土肥義治(1989) 生物が分解するプラスチック,サイエンス,12月号,80-88
- 20. 松崎弘美,田口精一,土肥義治(1999)環境調和型バイオポリエステル研究の新展開: 代謝制御工学から分子生理まで,日本油化学会,48,1353-1364
- Doi, Y., Tamaki, A., Kunioka, M. and Soga, K. (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by *Alcaligenes eutrophus* from butyric and pentanoic acids. *Appl. Microbiol. Bictechnol.*, 28, 330-334
- 22. 土肥義治(1988) 微生物のつくるバイオプラスチック-生命と環境を保全する夢の素材
 -,現代化学,12月号,44-49
- 23. Ren, Q., Kesseler, B., van der Leij, F. and Witholt, B. (1998) Mutants of *Pseudomonas putida* affected in poly-3-hydroxyalkanoate synthesis. *Appl. Microbiol. Bictechnol.*, **49**, 743-750
- Taguchi, K., Aoyagi, Y., Matsusaki, H., Fukui, T. and Doi, Y. (1999) Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in *Escherichia coli* HB101 strain. *FEMS Microbiol. Lett.*, **176**, 183-190
- Fukui, T. and Doi, Y. (1997) Cloning and analysis of the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J. Bacteriol., 179, 4821-4830
- 26. Fukui, T., Yokomizo, S., Kobayashi, G. and Doi, Y. (1999) Co-expression of polyhydroxyalkanoate synthase and (*R*)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol. Lett., 170, 69-75
- 27. Tsuge, T., Fukui, T., Matsusaki, H., Taguchi, S., Kobayashi, G., Ishizaki, A. and Doi, Y. (2000) Molecular cloning of two (*R*)-specific enoyl-CoA hydratase genes from *Pseudomonas aeruginosa* and their use for polyhydroxyalkanoate synthesis. *FEMS Microbiol. Lett.*, **184**, 193-198
- 28. Tsuge, T., Taguchi, K., Taguchi, S. and Doi, Y. (2003) Molecular characterization and properties of (*R*)-specific enoyl-CoA hydratases genes from *Pseudomonas aeruginosa*: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid β-oxidation. *Int. J. Biol. Macromol.*, **31**, 195-205

- 29. Kawashima, Y., Cheng, W., Mifune, J., Orita, I., Nakamura, S. and Fukui, T. (2012) Characterization and functional analysis of *R*-specific enoyl coenzyme A hydratases in polyhydroxyalkanoate-producing *Ralstonia eutropha*. *Appl. Environ. Microbiol.*, **78**, 493-502
- 30. Rehm, B.H.A., Kruger, N. and Steinbüchel, A. (1998) A new metabolic link between fatty acid *de novo* synthesis and polyhydroxyalkanoic acid synthesis. The *phaG* gene from *Pseudomonas putida* KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J. Biol. *Chem.*, 273, 24044-24051
- 31. Hoffman, N., Steinbüchel, A. and Rehm, B.H.A. (2000) The *Pseudomonas aeruginosa phaG* gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. *FEMS Microbiol. Lett.*, **184**, 253-259
- 32. Matsumoto, K., Matsusaki, H., Taguchi, S., Seki, M. and Doi, Y. (2001) Cloning and characterization of the *Pseudomonas* sp. 61-3 *phaG* gene involved in polyhydroxyalkanoate biosynthesis. *Biomacromolecules*, 2, 142-147
- 33. Mohammadi, M., Hassan, M.A. Phang, L.Y., Ariffin, H., Shirai, Y. and Ando, Y. (2012) Recovery and purification of intracellular polyhydroxyalkanoates from recombinant *Cupriavidus necator* using water and ethanol. *Biotechnol. Lett.*, 34, 253-259
- 34. Mohammadi, M., Hassan, M.A. Phang, L.Y., Ariffin, H., Shirai, Y. and Ando, Y. (2012) Efficient polyhydroxyalkanoate recovery from recombinant *Cupriavidus necator* by using low concentration of NaOH. *Environ. Eng. Sci.*, 29, 783-789
- 35. De Smet, M.J., Eggink, G., Witholt, B., Kingma, J. and Wynberg, H. (1983) Characterization of intracellular inclusions formed by *Pseudomonas oleovorans* during growth on octane. *J. Bacteriol.*, **154**, 870-878
- 36. Timm, A. and Steinbüchel, A. (1992) Cloning and molecular analysis of the poly (3-hydroxyalkanoic acid) gene locus of *Pseudomonas aeruginosa* PAO1. *Eur. J. Biochem.*, 209, 15-30
- 37. Qi, Q., Rehm, B.H.A. and Steinbüchel, A. (1997) Synthesis of poly(3-hydroxyalkanoate) in *Eschelichia coli* expressing the PHA synthase gene *phaC2* from *Pseudomonas aeruginosa*: comparison of PhaC1 and PhaC2. *FEMS Microbiol. Lett.*, **157**, 155-162

- 38. Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T. and Doi, Y. (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-*co*-3-hydroxyalkanoate) biosynthesis genes in *Pseudomonas* sp. strain 61-3. *J. Bacteriol.*, **180**, 6459-6467
- Hein, S., Paletta J.R.J. and Steinbüchel, A. (1997) Cloning, characterization and comparison of the *Pseudomonas mendocina* polyhydroxyalkanoate synthases PhaC1 and PhaC2. *Appl. Microbiol. Biotechnol.*, 58, 229-236
- 40. Chen, J.Y., Liu, T., Zheng, Z., Chen, J.C. and Chen, G.Q. (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from *Pseudomonas stutzeri* 1317 had different substrate specificities. *FEMS Microbiol. Lett.*, 234, 231-237
- 41. Matsumoto, K., Matsusaki, H., Taguchi, K., Seki, M. and Doi, Y. (2002) Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in *Pseudomonas* sp. 61-3. *Biomacromolecules*, 3, 787-792
- 42. Abe, H., Doi, Y., Fukushima, T. and Eya, H. (1994) Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by *Pseudomonas* sp. 61-3. *Int. J. Biol. Macromol.*, **16**, 115-119
- 43. Kato, M., Bao, H.J., Kang, C.K., Fukui, T. and Doi, Y. (1996) Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by *Pseudomonas* sp. 61-3 from sugars. *Appl. Microbiol. Biotechnol.*, **45**, 363-370
- 44. Kato, M., Fukui, T. and Doi, Y. (1996) Biosynthesis of polyester blends by *Pseudomonas* sp. 61-3 from alkanoic acids. *Bull. Chem. Soc. Jpn.*, 69, 515-520
- 45. Fukui, T., Kato, M., Matsusaki, H., Iwata, T, and Doi, Y. (1998) Morphological and ¹³C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in *Pseudomonas* sp. 61-3. *FEMS Microbiol. Lett.*, **164**, 219-225
- Holmes, P.A. (1985) Applications of PHB a microbially produced biodegradable thermoplastic. *Phys. Technol.*, 16, 32-36
- 47. Matsusaki, H., Abe, H. and Doi, Y. (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-*co*-3-hydroxyalkanoates) by recombinant strains of *Pseudomonas* sp. 61-3. *Biomacromolecules*, 1, 17-22

- 48. Matsusaki, H., Abe, H., Taguchi, K., Fukui, T. and Doi, Y. (2000) Biosynthesis of poly (3-hydroxybutyrate-*co*-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene *phaC1* from *Pseudomonas* sp. 61-3. *Appl. Microbiol. Biotechnol.*, **53**, 401-409
- 49. Griebel, R., Smith, Z. and Merrick, J.M. (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from *Bacillus megaterium*. *Biochemistry*, 7, 3676-3681
- 50. Lundgren, D.G., Pfister R.M. and Merrick, J.M. (1964) Structure of poly-β-hydroxybutyric acid granules. *J. Gen. Microbiol.*, **34**, 441-446
- 51. Barnard, G.N. and Sanders, J.K. (1989) The poly-β-hydroxybutyrate granule *in vivo*. A new insight based on NMR spectroscopy of whole cells. *J. Biol. Chem.*, **264**, 3286–3291
- 52. Anderson, A.J. and Dawes E.A. (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. *Microbiol. Rev.*, **54**, 450–472
- 53. Kawaguchi, Y. and Doi, Y. (1990) Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction. *FEMS Microbiol. Lett.*, **70**, 151-155
- 54. Horowitz, D.M., and Sanders, J.K.M. (1995) Biomimetic, amorphous granules of polyhydroxyalkanoates: composition, mobility, and stabilization *in vitro* by proteins. *Can. J. Microbiol.*, **41** (Suppl. 1), 115-123
- 55. Dunlop, W.F. and Robards A.W. (1973) Ultrastructural study of poly-β-hydroxybutyrate granules from *Bacillus cereus*. *J. Bacteriol.*, **114**, 1271-1280
- 56. Pieoer-Fürst, U., Madkour, M.H., Mayer, F. and Steinbüchel, A. (1994) Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in *Rhodococcus ruber*. J. Bacteriol., **176**, 4328–4337
- 57. Mayer, F., and Hoppert, M. (1997) Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implications for models describing the molecular architecture of this layer. J. Basic Microbiol., 37, 45-52
- 58. Stuart, E.S., Fuller, R.C. and Lenz, R.W. (1995) The ordered macromolecular surface of polyester inclusion bodies in *Pseudomonas oleovotans*. *Can. J. Microbiol.*, **41**, 84–93

- 59. Gerngross, T.U., Reilly, P., Stubbe, J., Sinskey, A.J. and Peoples, O.P. (1993) Immunocytochemical anlysis of poly-β-hydroxybutyrate (PHB) synthase in *Alcaligenes eutrophus* H16: Localization of the synthase enzyme at the surface of PHB granules. *J. Bacteriol.* 175, 5289-5293
- 60. Wieczorek, R., Pries, A. Steinbüchel, A. and Mayer, F. (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in *Alcaligenes eutrophus*. J. *Bacteriol.*, 177, 2425–2435
- York, G.M., Junker, B.H., Stubbe, J.A. and Sinskey, A.J. (2001) Accumulation of the PhaP phasing of *Ralstonia eutropha* is dependent on production of polyhydroxybutyrate in cells. *J. Bacteriol.*, 183, 4217–4226
- Neumann, L., Spinozzi, F., Sinibaldi, R., Rusticheli, F., Pöter, M. and Steinbüchel, A. (2008) Binding of the major phasin, PhaP1, from *Ralstonia eutropha* H16 to poly(3-hydroxybutyrate) granules. *J. Bacteriol.*, **190**, 2911-2919
- Schembri, M.A., Woods, A.A., Bayly, R.C. and Davies, J.K. (1995) Identification of a 13-kDa protein associated with the polyhydroxyalkanoic acid granules from *Acinetobacter* spp. *FEMS*. *Microbiol. Lett.*, 133, 277–283
- 64. Liebergesell, M. and Steinbüchel, A. (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in *Chromatium vinosum* strain D. *Eur. J. Biochem.*, 209, 135-150
- 65. McCool, G.J. and Cannon, M.C. (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in *Bacillus megaterium*. *J. Bacteriol.*, **181**, 585-592
- 66. Maehara, A., Ueda, S., Nakano, H. and Yamane, T. (1999) Analysis of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the *pha* locus of *Paracoccus denitrificans*. J. Bacteriol., 181, 2914-2921
- 67. Prieto, M.A., Bühler, B., Jung, K., Witholt, B. and Kessler, B. (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of *Pseudomonas oleovorans* GPo1 involved in the regulatory expression system for *pha* genes. *J. Bacteriol.*, **181**, 858–868
- 68. Ushimaru, K., Motoda, Y., Numata, K. and Tsuge, T. (2014) Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase. Appl. Environ. Microbiol., 80, 2867-2873

- 69. Slater, S., Houmiel, K.L., Tran, M., Mitsky, T.A., Taylor, N.B., Padgette, S.R. and Gruys, K.J. (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in *Ralstonia eutropha. J. Bacteriol.*, **180**, 1979-1987
- 70. Fukui, T. and Doi, Y. (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J. Bacteriol., 179, 4821-4830
- 71. Kusaka, S., Abe, H., Lee, S.Y. and Doi, Y. (1997) Molecular mass of poly((*R*)-3-hydroxybutyric acid) produced in a recombinant *Escherichia coli*. *Appl. Microbiol*. *Biotechnol.*, 47, 140-143
- 72. 岩田忠久, 日下聡, 土肥義治(1999)遺伝子組換え大腸菌による超高分子量生分解性ポリエステルの合成とその性質, 高分子加工,48,434-439
- 73. 大塚徳勝(2010)知らないと怖い環境問題(『知っておきたい環境問題』改訂改題),共 立出版
- 74. 科学技術動向(2012年,3・4月号)(http://hdl.handle.net/11035/2291)
- 75. 土肥義治(2001) 生分解性プラスチック(グリーンプラ)の新しい展開, サイエンスネット, 13, 2-5
- 76. 柘植丈治, 土肥義治(2000) バイオプロセスによる生分解性プラスチックの生産, 化学 工業, **51**, 423-428
- 77. Poirier Y., Dennis, D.E., Klomparens, K. and Somerville, C. (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. *Science*, **256**, 520-523
- 78. Nawrath, C., Poirier, Y. and Somervill, C. (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the palstids of *Arabidopsis thaliana* results in high levels of polymer accumulation. *Proc. Natl. Acad. Sci. USA*, **91**, 12760-12764
- 79. Bohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R.N. and Willmitzer, L. (2000) Transgenic *Arabidopsis* plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. *Planta.*, **211**, 841-845
- 80. Valentin, H.E. and Dennis, D. (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant *Escherichia coli* grown on glucose. J. Biotechnol., 58, 31-33

- 81. Park, S.J. and Lee, S.Y. (2004) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered *Escherichia coli* strains. *Appl. Biochem. Biotech.*, **114**, 335-346
- 82. Taguchi, S., Yamada, M., Matsumoto, K., Tajima, K., Satoh, Y. Munekata, M., Ohno, K., Kohda, K., Shimamura, T., Kambe, H. and Obata, S. (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. *Proc. Natl. Acad. Sci.*, **105**, 17323-17327
- 83. Chen, Q., Wang, Q., Wei, G., Liang, Q. and Qi, Q. (2011) Production in *Escherichia coli* of poly(3-hydroxybutyrate-*co*-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. *Appl. Environ. Microbiol.*, **77**, 4886-4893
- 84. Phithakrotchanakoon, C., Champreda, V., Aiba, S., Pootanakit, K. and Tanapongpipat, S. (2013) Engineered *Escherichia coli* for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. *Biosci. Biotechnol. Biochem.*, 77, 1262-1268
- 85. Tappel, R.C., Pan, W., Bergey, N.S., Wang, Q., Patterson, I.L., Ozumba, O.A., Matsumoto, K., Taguchi, S. and Nomura, C.T. (2014) Engineering *Escherichia coli* for improved production of short-chain-length-*co*-medium-chain-length poly[(*R*)-3-hydroxyalkanoate] (SCL-*co*-MCL PHA) copolymers from renewable nonfatty acid feedstocks. *ACS Sustainable Chem. Eng.*, 2, 1879-1887
- 86. Wang, Q., Liu, X. and Qi, Q. (2014) Biosynthesis of poly(3-hydroxybutyrate-*co*-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway. *Appl. Microbiol. Biotechnol.*, **98**, 3923-3931
- 87. Yang, J.E., Choi, Y.J, Lee, S.J., Kang, K.H., Lee, H., Oh, Y.H., Lee S.H., Park, S.J. and Lee, S.Y.
 (2014) Metabolic engineering of *Escherichia coli* for biosynthesis of poly(3-hydroxybutyrate-*co*-3-hydroxyvalerate) from glucose. *Appl. Microbiol. Biotechnol.*, 98, 95-104
- 88. Wang, Q., Tappel, R.C., Zhu, C. and Nomura, C.T. (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoate by recombinant *Escherichia coli* via inexpensive non-fatty acid feedstocks. *Appl. Environ. Microbiol.*, **78**, 519-527
89. Taguchi, S. and Doi, Y. (2004) Evolution of polyhydroxyalkanoate (PHA) production system by
"enzyme evolution": successful case studies of directed evolution. *Macromol. Biosci.*, 4, 146-156

第二章

Pseudomonas sp. 61-3 のポリヒドロキシ アルカン酸顆粒結合タンパク質遺伝子の クローニングと顆粒結合タンパク質の局在性

PHA は、微生物細胞内に顆粒として蓄積される¹⁾。その PHA 顆粒表面には、顆粒と特 異的に結合する顆粒結合タンパク質 (GAP; granule-associated protein) が存在する²⁾。GAP は、PHA 顆粒の安定性に関わるだけでなく、PHA 生合成遺伝子の転写調節に関与してい るものや^{3,4}、また PHA 重合酵素の活性を高めるものも知られており⁵、GAP の詳細な機 能解析が必要である。Pseudomonas sp. 61-3 は、炭素数 4 の 3HB からなる P(3HB)と炭素数 4~12の 3HA からなる P(3HB-co-3HA)の 2 つの PHA を同一菌体内に合成し、それぞれの 顆粒に特異的に結合する GAP が存在する(Fig. 1-10)⁹。PHA 顆粒にはポリエステル重合 酵素以外に、分子量 18 kDa の GA18、36 kDa の GA36、24 kDa の GA24、48 kDa の GA48 (porin) が結合することが明らかとなっており、GA18 および GA36 の遺伝子は、phalpe および phaF_{Ps} とそれぞれ同定されているが⁶、GA24 遺伝子は同定されていない。これまで に P(3HB) 生合成遺伝子クラスターの配置が、Pseudomonas sp. 61-3 と同一である Azotobacter vinelandii UW 136 において、GA24 のアミノ酸配列と相同性を示すタンパク質 PhbP_{Av}の遺 伝子が、phbR_{Av}遺伝子の下流に存在すると報告されており⁷、Pseudomonas sp. 61-3 におい てもGA24遺伝子がphbR_p遺伝子の下流に存在すると予想した。そこで、GA24のN末端 アミノ酸配列から degenerate プライマーを作製し、既知の調節タンパク質遺伝子(phbR_{ps}) の塩基配列プライマーとの PCR を試みた。さらに、PCR により得られた GA24 遺伝子を プローブとして、本菌のゲノム DNA ライブラリーのコロニーハイブリダイゼーションを 行い、GA24遺伝子の周辺領域のクローニングも試みた。

また、*Pseudomonas* sp. 61-3 において、P(3HB)と P(3HB-co-3HA)の2つの PHA 顆粒に GAP がどのように局在しているのかについては明らかになっていない。そこで、さまざまなモノマー組成の共重合 PHA を合成する本菌の組換え株を作製し、PHA のモノマー組成と GAP の局在性について検討した。

2-2 実験操作

2-2-1 使用菌株および使用プラスミド

本研究で使用した菌株およびプラスミドを Table 2-1 に示した。

2-2-2 菌株の保存

菌株の保存には、復元が容易な凍結保存法を用いる。菌体が生育している LB 寒天平板 培地(必要に応じて抗生物質含有)から、単コロニーを液体培地に植菌し、最適温度で 12 ~18 時間振とう培養(120~150 strokes/min)を行った培養液に、保護分散媒として 60%グ リセロール水溶液(オートクレーブ殺菌済み)を 3:1 の割合で加え(終濃度 15%グリセ ロール水溶液)、セラムチューブ(滅菌済み)に 0.5 mL ずつ分注し、-25℃ で保存する。ま た、菌株を長期保存する場合は-80℃ で保存を行う。

実験期間中の短期の保存には、菌体が生育している寒天平板培地から単コロニーを寒天 平板培地に植菌後、最適温度で12~36時間培養を行い、4℃で保存し、3週間毎に植え継 ぎを行う。

[able 2-1] 使用 園 株 お よ ひ フ ス		
Strain or plasmid	Relevant characteristics	Source or reference
Strains		
Pseudomonas sp. 61-3	Wild type	JCM 10015, 8)
Pseudomonas sp. 61-3 (phbC::tet)	Inactivation of chromosomal $phbC_{P_s}$ by integration of Tc'; $phbC_{P_s}$ -negative mutant	8)
Pseudomonas sp. AC1-TnK	phaCl negative mutant, phaCl::kan (Tn10), Km ^r	This study
Pseudomonas sp. BCG-TcGm	Inactivation of chromosomal $phbC_{P_s}$ and $phaG_{P_s}$ by integration of Tc ^r and Gm ^r , respectively ; $phbC_{P_s}$ - and $phaG_{P_s}$ negative mutant	(6
E. coli DH5α	deoR endaAl gyrA96 hsdR17 ($r_{K}^{-} m_{K}^{+}$) relAl supE thi-1 Δ (lacZYA-argFV169) ϕ 80 Δ lacZ Δ M15F λ -	Clontech
E. coli S17-1	recA and tra genes of plasmid RP4 integrated into the chromosome; auxotrophic for proline and thiamine	10)
E. coli S17-1 (Apir)	π protein encoded by R6K integrated into chromosome	11)
plasmids		
pBluescript II KS ⁺	Ap ^r <i>lacPOZ</i> T7 and T3 promoter	Stratagene
pT7Blue T-vector	Ap ^r , <i>lacPOZ</i>	Novagen
pLA2917	Km ^r , Tc ^r , cosmid cloning derivatives of pLA2901	12)
pJASc22	pJRD215 derivative; <i>phaCl</i> _{Ps}	8)
pJKSc54-phab	pJRD215 derivative; $pha_{ m Ps}$ promoter, $phaCI_{ m Ps}, phb_{ m Re}$ promoter, $phbA_{ m Re}, phbB_{ m Re}$	13)
pJKSc46-pha	pJRD215 derivative; $pha_{ m Ps}$ promoter, $phaCI_{ m Ps}, phbA_{ m Re}, phbB_{ m Re}$	13)
pBSEX22	pBluescript II KS ⁺ derivative; pha_{p_s} promoter, $phaCI_{p_s}$	13)
pBSL180	Ap ^r , Km ^r , R6K replicon, suicide, <i>lacI</i> ^q , tnp (Tn10), mob+, IS10	11)
pSLBE13dC1	pBSL180 derivative containing the 1.3-kb Bg/II-EcoRI fragment of pBSEX22	This study

2 رر 伸田茜姓やトバプラス Table 2-1 2-2-3 GA24 遺伝子のクローニング

A. vinelandii UW136 において、P(3HB)生合成遺伝子クラスターの配置が Pseudomonas sp. 61-3 と同一であること、さらに GA24 の N 末端アミノ酸配列と相同性を示す PhbP_{Av}の遺伝 子が、phbR_{Av}遺伝子の下流に存在すると報告されていることから[¬]、Pseudomonas sp. 61-3 においても GA24 遺伝子が phbR_{Ps}遺伝子の下流に存在すると予想し、GA24 遺伝子の PCR クローニングを試みた。まず、既知の調節タンパク質遺伝子 (phbR_{Ps})の下流配列と GA24 の N 末端アミノ酸配列 (NH₂-(M)TFFNLEKLQDAQKANLDLLQQISGKIFASVEQLT)⁶から プライマー、phbRDS-f1 および GA24-r1 を作製し (Table 2-2)、PCR を行った (Tables 2-3 and 2-4)。

Table 2-2 使用プライマー

Primer	Sequence
phbRDS-f1	5'-TTCCTTGTGAAGGCTCATTGAGGCGTTCAT-3'
GA24-r1	5'-TG(T/C)TCIACIG(A/T)IGC(A/G)AA(A/G/T)AT(T/C)TT-3'

Table 2-3 反応組成液

Components	Volume (µL)	Final Concentration
$2 \times GC$ buffer I (Mg ²⁺ plus)	25	1 ×
2.5 mM dNTP	8	1 mM each
phbRDS-f1 (10 μ M)	1	$0.2\mu\mathrm{M}$
GA24-r1 (10 µM)	3	0.6 µM
Template DNA	Х	< 1 µg
TaKaRa LA Taq (5 units/µL)	0.5	2.5 units/50 µL
滅菌水	up to 50	

Table 2-4 サイクリング条件

	Temperature	Time
Preheat	94°C	5 min
Denature	94°C	1 min
Anneal	40°C	1 min
Extend	72°C	$3 \min$ (to step 2×30)
Cool	4°C	∞

使用酵素

TaKaRa LA Taq with GC buffer (TaKaRa)

得られた約 3-kb の増幅産物を pT7Blue T-vector にクローニングした。rTaq DNA Polymerase (TOYOBO) を用いたコロニーPCR にてインサートチェックを行い、目的遺伝 子の導入が期待されたコロニーからプラスミドを抽出し、DNA シークエンシングを行った。 そして、pT7-3-kb GA24-r1-phbRDS-f1-R を取得した。次に、制限酵素処理を行い、pT7-3-kb GA24-r1-phbRDS-f1-R のサブクローンを作製し、DNA シークエンシングを行った。

次に、pT7-3-kb GA24-r1-phbRDS-f1-R にクローニングされている GA24 遺伝子の配列を 基に作製した GA24-f2 と GA24-f3 のプライマー (Tables 2-5 and 2-8) で、Pseudomonas sp. 61-3 のゲノム DNA を鋳型とした LA PCR in vitro Cloning Kit (TaKaRa) を用いた nested PCR に より、GA24遺伝子の下流域をクローニングした。まず、Pseudomonas sp. 61-3のゲノム DNA を Sall および EcoRI で消化し、それぞれの制限酵素に対応する制限酵素サイトを持つカセ ットとライゲーション反応により連結させた。次に、ライゲーション反応後の DNA 溶液 を用いて、カセットプライマー(Primer C1)とGA24-f2プライマーで1回目のPCRを行 った(ファーストPCR)(Tables 2-6 and 2-7)。その後、それぞれのファーストPCR 反応液 を滅菌水で適宜希釈 (原液~10⁴倍希釈液) し、カセットプライマー (Primer C2) と GA24-f3 を用いて、ファーストPCRと同条件で2回目のPCRを行った(セカンドPCR) (Tables 2-7、 2-8 and 2-9)。特異的な増幅が確認された Sall 処理サンプルのセカンド PCR の反応液から、 0.7-kb の増幅バンドを切り出し、pT7Blue T-vector にクローニングした。そのプラスミドで E. coli JM109 を形質転換したコロニーを LA Taq with GC buffer を用いたコロニーPCR にて インサートチェックを行い、目的遺伝子の導入が期待されるコロニー2 つからプラスミド を抽出し、DNA シークエンシングを行った。この2つのプラスミドは、それぞれ逆向きに 遺伝子が挿入されており、pT7-GA24(LA)-F および pT7-GA24(LA)-R と命名した。さらに、 pT7-GA24(LA)-R を Sall で消化後、0.7-kb を切り出し、pBluescript II KS+にクローニングし たサブクローン pBS-GA24(LA)を作製し、DNA シークエンシングを行った。

【DNA の制限酵素消化】

1) 下記の反応液を調製し、37℃で一晩インキュベートする。

5 µg
5 µL
$40\mu\mathrm{L}$
Up to 50 μ L

- 2) 反応終了後、3 M 酢酸ナトリウムを 40 µL と、1 mL の 100% 冷エタノールを加え、エ タノール沈殿を行う。
- 3) エタノール沈殿後、乾燥させた沈殿物を、10 µLの滅菌水に溶解する。

【ライゲーション反応】

1) 下記の反応液を調製し、16℃で30分~一晩インキュベートする。

DNA の制限酵素消化で調製した DNA 溶液	5 µL
Cassette (10 μ M)	2.5 μL
Ligation high Ver. 2 (TOYOBO)	7.5 μL

2) 反応終了後、エタノール沈殿を行い、5µLの滅菌水に溶解する。

【PCR による増幅反応】

操作

- ライゲーション反応で調製した DNA 溶液 1 µL に滅菌水 13.5 µL を加え、94℃ で 10 分間の熱変性を行う。
- 2) 下記の条件で1回目のPCR を行う(Tables 2-5, 2-6 and 2-7)。

Table 2-5 使用プライマー

Primer	Sequence
GA24-f2	5'-AACTTGGAGAAATTGCAAGACGCT-3'
Cassette primer C1	5'-GTACATATTGTCGTTAGAACGCGTAATACGACTCA-3'

Volume (μ L) Components 熱変性 DNA 溶液 14.5 $2 \times GC$ Buffer I (Mg²⁺ plus) 25 TaKaRa LA Taq 0.5 dNTP Mixture 8 Cassette primer C1 1 GA24-f2 1 滅菌水 up to $50 \,\mu L$

Table 2-6 反応組成液

Table 2-7 サイクリング条件

a) <4 kb の場合

	Temperature	Time
Preheat	94°C	5 min
Denature	94°C	1 min
Anneal	55°C	1 min
Extend	72°C	4 min (to step 2×30)
Cool	4°C	∞

b) ≥4 kb の場合

	Temperature	Time
Preheat	96°C	5 min
Denature	96°C	20 sec
Anneal • Extend	68°C	15 min (to step 2×30)
Cool	4°C	∞

使用酵素

TaKaRa LA Taq with GC buffer (TaKaRa)

3) 2)の反応液のうち、滅菌水で適宜希釈したもの(原液~10⁴倍希釈液) 1 µL を用いて Tables 2-7、2-8 and 2-9 の条件で2回目の PCR を行う。

Table 2-8 使用プライマー

Primer	Sequence
GA24-f3	5'-CAACCTAGACCTCCTGCAGCAAAT-3'
Cassette primer C2	5'-CGTTAGAACGCGTAATACGACTCACTATAGGGAGA-3'

Table 2-9 反応組成液

Components	Volume (µl)
1回目の PCR 反応液の順次希釈液	1
$2 \times GC$ Buffer I (Mg ²⁺ plus)	25
TaKaRa LA Taq	0.5
dNTP Mixture	8
Cassette primer C2	1
GA24-f3	1
滅菌水	up to $50 \mu\text{L}$

次に、上記において得られた PCR 産物をプローブとして本菌のゲノム DNA ライブラリ ーからのGA24遺伝子およびその周辺領域のクローニングを行った。プローブ(Gene Images CDP-Star Detection Kit (GE Healthcare) 使用)として、GA24 遺伝子(0.5-kb GA24 断片) および GA24 と phbR 遺伝子下流域の間の 3-kb (3-kb GA24-phbRDS 断片) を用いた。0.5-kb GA24 断片は、pT7-GA24(LA)-Fを鋳型として、GA24-f3 および GA24-r3 プライマー(Table 2-10) を用いた PCR を行い(Tables 2-11 and 2-12)、0.5-kb の増幅産物をゲルから切り出し て取得した。また、3-kb GA24-phbRDS 断片は、プラスミド pT7-3-kb GA24-r1-phbRDS-f1-R を鋳型として、phbRDS-f1 および GA24-r2 プライマー(Table 2-13) で PCR を行い(Tables 2-14 and 2-15)、3-kbの増幅産物を切り出して取得した。まず、0.5-kb GA24 断片を用いて 本菌のゲノム DNA ライブラリーのコロニーハイブリダイゼーションを行った。一次スク リーニングから4個のコロニーを選抜し、二次スクリーニングを行い、二次スクリーニン グで強い感光を示したコロニーを8個選抜し、三次スクリーニングを行った。 強い感光を 示した 2 つのクローンを pLA2917Ps1-4 および pLA2917Ps8'-4 と命名し、これらのプラス ミドを抽出し、サザンハイブリダイゼーションを行った。次に、pLA2917Ps8'-4 からサブ クローンを作製し、7.6-kb HindIII 断片および 6.9-kb SacI 断片を pBluescript II KS+に挿入し、 E. coli DH5α を形質転換した。これらのサブクローンより、セルフライゲーションや目的 とする DNA 断片をゲルから切り出して、さらにサブクローンを作製し、その両鎖の DNA シークエンシングを行った。さらに、GA24 遺伝子の周辺領域のクローニングを進めるために、3-kb GA24-phbRDS 断片をプローブとして、サザンハイブリダイゼーションを行った。

Table 2-10 使用プライマー

Primer	Sequence
GA24-f3	5'-CAACCTAGACCTCCTGCAGCAAAT-3'
GA24-r3	5'-TTACTTGTTACCGCTTGTTGCCTTGCCAGT-3'

Table 2-11 反応組成液

Components	Volume (µL)	Final Concentration
$10 \times PCR$ buffer for rTaq (Mg ²⁺ plus)	5	1 ×
2 mM dNTPs	5	0.2 mM each
GA24-f3 (10 µM)	2.5	0.5 µM
GA24-r3 (10 µM)	2.5	0.5 µM
Template DNA	Х	0.2∼0.5 µg
rTaq DNA Polymerase	0.5	2.5 units/50 μ L
滅菌水	up to $50 \mu L$	

Table 2-12 サイクリング条件

	Temperature	Time
Preheat	94°C	5 min
Denature	94°C	1 min
Anneal	55°C	1 min
Extend	72°C	1 min (to step 2×30)
Cool	4°C	∞

・使用酵素

rTaq DNA Polymerase (TOYOBO)

Table 2-13 使用プライマー

Primer	Sequence
phbRDS-f1	5'-TCCCTTGTGAAGGCTCATTGAGGCGTTCAT-3'
GA24-r2	5'-GCCGCTGATTTGCTGCAGGAGGTCTAGGTT-3'

Table 2-14 反応組成液

Components	Volume (µL)	Final Concentration
$2 \times GC$ buffer I (Mg ²⁺ plus)	25	1 ×
2.5 mM dNTPs	8	1 mM each
phbRDS-f1 (10 μ M)	1	$0.2\mu\mathrm{M}$
GA24-r2 (10 μM)	3	0.6 µM
Template DNA	Х	<1µg
TaKaRa LA Taq	0.5	2.5 units/50 µL
滅菌水	up to $50 \mu L$	

Table 2-15 サイクリング条件

	Temperature	Time
Preheat	94℃	5 min
Denature	94°C	1 min
Anneal	64°C	1 min
Extend	72°C	3 min (to step 2 x 30)
Cool	4°C	œ

• 使用酵素

TaKaRa LA Taq with GC buffer (TaKaRa)

次に、*phbP*_{Ps}遺伝子(GA24 遺伝子)の塩基配列をもとに GA24-r3(TAA)プライマーを合成し、*phbR*_{Ps}遺伝子下流域にアニールする phbRDS-f1 プライマーを用いて、PCR を行い、 *phbP*_{Ps}遺伝子と *phbR*_{Ps}遺伝子の間の領域のクローニングを試みた(Tables 2-16, 2-17 and 2-18)。得られた PCR 産物を用いて、アガロースゲル電気泳動を行い、約 3-kb の DNA 断 片を切り出し、GENECLEAN KIT (BIO 101)を用いてゲルから DNA を抽出後、kination 反応 を行った。その後、*Eco*RV で消化し、アルカリフォスファターゼ処理を行った pBluescript II KS⁺とライゲーション反応を行った。得られたクローンについて、DNA シークエンシン グによって目的の DNA 領域がクローニングされていることを確認し、作製したプラスミ ドを pBS-3.7-kb GA24-r3-phbRDS-f1-R と命名した。pBS-3.7-kb GA24-r3-phbRDS-f1-R をア ルカリ SDS 法により抽出後、さまざまな制限酵素(Table 2-19) で消化し、サブクローン を作製した。制限酵素処理あるいはコロニーPCR を行い、インサートチェックを行った。 その後、インサートチェックにより目的のものが導入されていると思われるコロニーより、 プラスミド抽出を行い、DNA シークエンシングを行って、塩基配列を決定した。

Table 2-16 使用プライマー

Primer	Sequence
phbRDS-f1	5'-TTCCTTGTGAAGGCTCATTGAGGCGTTCAT-3'
GA24-r3(TAA)	5'-TTACTTGTTACCGCTTGTTGCCTTGCCAGT-3'

Table 2-17 反応組成液

Components	Volume (μ L)	Final Concentration
5 × PrimeSTAR Buffer	10	1×
2.5 mM dNTP (dNTP Mix)	4	0.2 mM each
phbRDS-f1 (10 μ M)	1.5	0.3 µM
GA24-r3(TAA) (10 µM)	1.5	0.3 µM
Template DNA	Х	< 200 ng
PrimeSTAR HS DNA Polymerase (2.5 units/µL)	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 2-18 サイクリング条件

	Temperature	Time
Preheat	94°C	1 min
Denature	94°C	15 sec
Anneal	64°C	15 sec
Extend	72°C	$3 \min (\text{to step } 2 \times 30)$
Extend	72°C	15 min
Cool	4°C	∞

使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

制限酵素		Buffer	反応最適温度
PstI	(TOYOBO)	H buffer	37℃
<i>Hin</i> dIII	(TOYOBO)	M buffer	37°C
<i>Eco</i> RV	(TOYOBO)	H buffer	37°C
<i>Eco</i> RI	(TOYOBO)	H buffer	37°C
SalI	(TOYOBO)	H buffer	37°C
KpnI	(TOYOBO)	L buffer	37°C
SacI	(TOYOBO)	L buffer	37°C
SmaI	(TOYOBO)	Smal 用 buffer	30°C
BamHI	(TOYOBO)	H buffer	37°C

Table 2-19 使用した制限酵素

2-2-4 phaCl_{Ps}遺伝子破壊株 (Pseudomonas sp. C1-TnK) の作製

本研究では、GAPの局在性が何に起因するのかを調べるために、さまざまなモノマー組 成からなる共重合 PHA を合成させる必要がある。また、ポリエステル重合酵素との相互 作用についても検討するために、Pseudomonas sp. 61-3の phaC1_R遺伝子あるいは phbC_R遺 伝子を破壊した組換え株を宿主とした。phbC_{Ps}遺伝子破壊株については、松崎らによって 作製された Pseudomonas sp. 61-3 (phbC::tet)を使用した⁸。本研究では、phaCl_{Ps}遺伝子破壊 株を作製した。phaClps遺伝子の破壊をトランスポゾンによる相同的組換えにより行うため に、IS 配列を有する自殺ベクターpBSL180 を用いた。宿主には、pBSL180 を保持すること ができる E. coli S17-1(λpir)を使用した。まず、プラスミド pBSEX22 を BgIII および EcoRI で消化し、得られた phaCl_{Ps}遺伝子の一部を含む 1.3-kb Bg/II-EcoRI 断片を、Bg/II および EcoRI で消化して、アルカリフォスファターゼ処理した pBSL180 ベクターとライゲーショ ンした。上記のように作製したプラスミドを pSLBE13dC1 と命名した。pSLBE13dC1 を保 持した E. coli S17-1(λpir)を Pseudomoas sp. 61-3 を宿主として、松本らの方法⁹と同様に接合 伝達を行い (Appendix 参照)、宿主の染色体上の phaCl_{Ps}遺伝子を破壊した (Pseudomonas sp. C1-TnK)。E. coli S17-1 には、伝達性因子 tra が組み込まれている。一方、使用したプラス ミドには、他動伝達性遺伝子 mob 領域が組み込まれており、2 つが存在した状態で別の宿 主を混合するとプラスミドが他の宿主に伝達される。これを利用して組換え株を作製する。 その他、エレクトロポレーション法により、宿主に目的プラスミドを導入する手法もある

が、一般的にグラム陰性菌では、この接合伝達法がよく用いられる。

宿主の目的遺伝子が破壊されているかについては、1.3-kb *BgI*II-*Eco*RI 断片を用いて、 *phbC1*_{Ps} 遺伝子のプローブを作製し、サザンハイブリダイゼーションによって確認した (DIG DNA Labeling and Detection Kit (Roche) 使用)。

2-2-5 遺伝子組換え株の作製

野生株および遺伝子組換え株のほかに、さまざまなモノマー組成比の PHA を合成する 組換え株を作製し、GAP のポリエステルへの局在性について検討した。*E. coli* S17-1 を介 した接合伝達法を用いて、プラスミド pJASc22、pJKSc46-pha および pJKSc54-phab を *Pseudomonas* sp. 61-3 (*phbC::tet*)、*Pseudomonas* sp. AC1-TnK あるいは *Pseudomonas* sp. BCG-TcGm に導入した組換え株を作製した。

2-2-6 顆粒結合タンパク質の単離

MS 培地で Pseudomonas sp. 61-3 およびその遺伝子組換え株を 28°C、増殖の程度により 48 時間または 72 時間培養後、遠心分離(7,700 g、5 min、4°C)により集菌し、菌体を約 130 mL の 0.1 M Tris-HCl (pH 7.5)で 2 回洗浄を行った。その後、再度遠心分離により集菌し、 2 mL の 0.1 M Tris-HCl (pH 7.5)に整濁した。菌体懸濁液を氷上で低温に保ち、インター バルをとりながら超音波破砕機で菌体を破砕した(30 W、10 sec、20 回)。菌体の破砕を位 相差顕微鏡で確認した。次に、スクロース密度勾配(5 mL の超遠心チューブに 2 M、1.67 M、1.33 M、1 M スクロース(in 0.1 M Tris-HCl、pH 7.5)を各 1 mL ずつ積層)を作製し、 その上に菌体破砕物 1 mL を静かにのせ、超遠心分離(210,000 g(45,000 pm)、160 min、 4°C)を行った。自いバンドで示される 2 種類の顆粒面分(PHB および PHA 顆粒)をそれ ぞれ単離した。単離した顆粒面分をさらに遠心チューブの約7割容(約6.5 mL)の0.1 M Tris-HCl (pH 7.5)を加え懸濁し、遠心分離(24,000 g、30 min、4°C)を行った。この操作 を 2~3 回繰り返して洗浄し、ポリエステル顆粒を収集した。その後、100~200 μ L の 0.1 M Tris-HCl (pH 7.5)に懸濁し、懸濁液をサンプルとして SDS-PAGE およびガスクロマトグ ラフィー (GC) による分析を行った。

2-2-7 SDS-PAGE

単離したポリエステル顆粒画分サンプルを 2 × Sample buffer に懸濁して、98°C、10 min 熱変性を行い、電気泳動を行った。分子量マーカーには、LMW Calibration Kit for SDS Electrophoresis (GE Healthcare)を使用し、サンプルはタンパク質量が 15~50 μ g となるよ うにアプライした。150 V で約 90 min 電気泳動を行い、泳動後、CBB 染色を行った (Bio-Safe Coomassie (BIO-RAD))。Appendix-2 protocols 参照。

2-2-8 ガスクロマトグラフィー (GC)

単離したポリエステル顆粒画分サンプルのモノマー組成については、SDS-PAGE 使用後 のポリエステル顆粒懸濁液の残り(SDS-PAGE 使用後の残量約 50~100 μ L)あるいは、乾 燥菌体に含まれる PHA をメタノリシスによって、3-ヒドロキシアルカン酸メチルエステル に変換し、GC を用いて調べた。ガスクロマトグラフ装置は GC-17A(Shimadzu)を、カラ ムに Inert Cap1(0.25 mm I.D × 30 m, 0.4 mm; GL Sciences)を用いて水素イオン化検出器に より検出した。サンプルの一回の注入量は 1 μ L とし、GC 面積の積分には、C-R7A plus CHROMATOPAC(Shimadzu)を用いた。Appendix-2 protocols 参照。

2-3 結果および考察

2-3-1 phbP_{Ps}および phbF_{Ps}遺伝子のクローニングと同定

これまでに P(3HB)生合成遺伝子クラスターの配置が、*Pseudomonas* sp. 61-3 と同一である *Azotobacter vinelandii* UW 136 において、PhbP_{Av}の遺伝子が *phbR*_{Av}遺伝子の下流に存在す

ると報告されており⁷、*Pseudomonas* sp. 61-3 においても GA24 遺伝子が *phbR*_{Ps} 遺伝子の下 流に存在すると予想し、GA24 遺伝子のクローニングを試みた。まず、*phbR*_{Ps} 遺伝子の下 流配列と、これまでに明らかとなっている GA24 の N 末端アミノ酸配列 (NH₂-(M)TFFNLEKLQDAQKANLDLLQ)⁶より、phbRDS-f1 および GA24-r1 プライマー を合成し、PCR を行った。その結果、約 3-kb の増幅産物が得られ、この増幅産物を pT7Blue T-vector にクローニングし、DNA シークエンシングを行った。その結果、pT7-3-kb GA24-r1-phbRDS-f1-R のクローンを取得した。次に、制限酵素処理を行い、pT7-3-kb GA24-r1-phbRDS-f1-R のサブクローンを作製し、DNA シークエンシングを行った。

次に、GA24遺伝子全長のクローニングを進めるために、pT7-3-kb GA24-r1-phbRDS-f1-R にクローニングされている GA24 遺伝子の配列を基に、GA24-f2 および GA24-f3 プライマ ーを作製し、Pseudomonas sp. 61-3 のゲノム DNA を鋳型にして LA PCR in vitro Cloning Kit (TaKaRa)を用いた nested PCR を行った。ファースト PCR の結果、サイクル条件が<4 kb の場合で、Sall 処理を行ったサンプルにおいて 0.7 kb の増幅が見られた。一方、サイクル 条件が≥4 kb の場合で、EcoRI 処理を行ったサンプルにおいて 4 kb および 4.4 kb の増幅が みられた。そこで、それぞれのファースト PCR の反応液を滅菌水で適宜希釈したもの(原 液~10⁴倍希釈液)を用いて、ファーストPCRと同条件でセカンドPCRを行った。その結 果、Sall 処理サンプルでは特異的な増幅が確認されたが、EcoRI 処理サンプルでは、特異 的な増幅は見られなかった。そこで、Sall 処理サンプルのセカンド PCR の反応液から、0.7 kb の増幅バンドを切り出し、pT7Blue T-vector にラーゲーションして、E. coli JM109 を形質 転換してできたコロニーをコロニーPCR(LA Taq with GC buffer 利用)にてインサートチ ェックを行った。そして、目的の DNA の導入が期待されるコロニー2 つからプラスミドを 抽出し、DNA シークエンシングを行った。その結果、アミノ酸レベルで PhaP (Azotobacter sp. FA8) と 57%、PhbP (A. vinelandii AvOP) と 54%の相同性が明らかとなった^{7,14)}。この 抽出した 2 つのプラスミドをそれぞれ pT7-GA24(LA)-F および pT7-GA24(LA)-R と命名し た。また、これらのプラスミドには、さらに PhaR (A. vinelandii AvOP) や PhaF (Azotobacter sp. FA8) と相同性のある領域が一部含まれていることがわかった^{7,14}。さらに、 pT7-GA24(LA)-R を Sall で消化後、0.7-kb を切り出し、pBluescript II KS+にクローニングし たサブクローン pBS-GA24(LA)を作製した。 DNA シークエンシングを行ったところ、GA24 遺伝子の推定翻訳産物とPhaP(Azotobacter sp. FA8)やPhbP(A. vinelandii AvOP)との相 同性がみられたため、この領域を本菌のGA24遺伝子であると判断し、phbPp。と命名した。

次に、phbP_{Ps}遺伝子全長の塩基配列の決定と周辺領域のクローニングを進めるために、 phbP。遺伝子部分をプローブとして、本菌のゲノム DNA ライブラリーのコロニーハイブリ ダイゼーションを行った。pT7-GA24(LA)-F にクローニングされている phbP 遺伝子の配 列から GA24-r3 プライマーを合成し、GA24-f3 プライマーとともに pT7-GA24(LA)-F のプ ラスミドを鋳型として、rTaq DNA Polymerase を用いた PCR を行った。その後、phbP_B遺 伝子を含む 0.5-kb の増幅産物を切り出し、0.5-kb GA24 断片をプローブとして、本菌のゲ ノム DNA ライブラリーのコロニーハイブリダイゼーションを行った。 ゲノム DNA ライブ ラリーの適正希釈率を調べるため、培養液の1~10⁸倍希釈溶液をLB(Tc)プレートに200 µL プレーティングした結果、10⁵ 倍希釈溶液が適正希釈率(コロニー数が 500~1000 個) と判断した。この希釈率で6枚のLB(Tc)プレートにプレーティングし、コロニーハイ ブリダイゼーションを行った (一次スクリーニング)。一次スクリーニングから4個 (Clone No. 1、4、7、8)のコロニーを選抜し、二次スクリーニングを行い、二次スクリーニング で強い感光を示したコロニーを8個選抜し、三次スクリーニングを行った。その結果から、 強い感光を示した 2 つのクローンを pLA2917Ps1-4 および pLA2917Ps8'-4 と命名し、これ ら 2 つのクローンをポジティブクローンとして選抜した。pLA2917Ps1-4 および pLA2917Ps8'-4 よりプラスミドを抽出し、サザンハイブリダイゼーションを行った (data not shown)。その結果と制限酵素地図を基に、サブクローンの作製に適当と思われた pLA2917Ps8'-4 からサブクローンを作製した。7.6-kb HindIII 断片および 6.9-kb SacI 断片を pBluescript II KS⁺に挿入し、E. coli DH5α を形質転換した。これらのサブクローンより、セ ルフライゲーションや目的とする DNA 断片の切り出しでさらにサブクローンを作製し、 その両鎖の DNA シークエンシングの結果から、1.9-kb Smal-HindIII 領域の塩基配列を決定 した。さらに、phbP_{Ps}遺伝子の周辺領域、特に、phbP_{Ps}遺伝子とphbR_{Ps}遺伝子の間の約3kb 領域のクローニングを進めるために、phbRDS-f1 および GA24-r2 プライマーを用いて、PCR を行った (LA Taq with GC buffer 利用)。その後、phbPp。遺伝子と phbRps 遺伝子の間の約 3-kb の増幅産物を切り出し、プローブ(3-kb GA24-phbRDS 断片)を作製し、サザンハイブリ ダイゼーションを行った。サザンハイブリダイゼーションの結果と制限酵素地図より、 pLA2917Ps8'-4 には、phbP_P遺伝子および phbF_P遺伝子だけでなく phbR_P遺伝子もクロー ニングされていると予想された。そこでさらに、phbP_B遺伝子の塩基配列をもとに合成し た GA24-r3(TAA)プライマーと phbR_{Ps} 遺伝子下流域の塩基配列をもとに合成した phbRDS-f1 プライマーを用いて PCR を行った。その結果、3.7 kb の増幅産物が得られ、こ

れを pBluescript II KS⁺にクローニングし、プラスミド pBS-3.7-kb GA24-r3-phbRDS-f1-R と命 名した。次に、pBS-3.7-kb GA24-r3-phbRDS-f1-R をさまざまな制限酵素で消化後、サブク ローンを作製し、DNA シークエンシングを行った。上記により、本研究では、*phbR*_{Ps}遺伝 子下流域の 4.2 kb *Eco*RV-*Sph*I 領域の塩基配列を決定した (accession no. LC019127 in EMBL, GenBank and DDBJ)。また、*phbF*_{Ps}遺伝子の上流域のクローニングによって、*phbF*_{Ps}遺伝子 の上流域は PHA 生合成に関連がないことが明らかとなった(永井、未発表)。以上より、 *Pseudomonas* sp. 61-3 の *pha* および *phb* locus 上のすべての遺伝子が同定された(Fig. 2-1)。

*phbP*_P,遺伝子は 192 アミノ酸残基からなる推定分子量 20.4 kDa のタンパク質を、*phbF*_P 遺伝子は177アミノ酸残基からなる推定分子量約19.6kDaのタンパク質をコードしている と考えられた。PhbP_{Ps}は、Azotobacter sp. FA8のPhaP_{As}と57%¹⁴、A. vinelandii AvOPのPhbP_{Av}^{η} と54%の相同性を示し、PHA顆粒の安定性に関わるphasinタンパク質であると予想された。 PhbF_{Ps}は、*Azotobacter* sp. FA8 の PhaF_{As}¹⁴と 69%、*A. vinelandii* AvOP の PhbP_{Av}⁷⁾と 68%の相 同性を示し、さらには phasin 遺伝子の転写を抑制する調節タンパク質と予想されている P. denitrificans の Pha R_{Pd}^{3} と 37.5%、R. eutropah の Pha $R_{Re}^{15,16}$ と 56%の相同性を示した。また、 Pfam¹⁷⁾によるドメイン解析の結果、PhbF_{Ps}は、PHB/PHA accumulation regulator DNA-binding domain (amino acid positions 10 to 73), PHB accumulation regulatory domain (amino acid positions 75 to 114) および PHB accumulation regulatory domain (amino acid positions 116 to 154)の3つのドメインからなることがわかった。以上より、PhbF_{Pe}は、phbP_{Pe}遺伝子の発 現を抑制する調節タンパク質であると予想された。また、コンピューター解析の結果、 phbP_p遺伝子の上流にphbP_p遺伝子およびphbR_p遺伝子と逆向きに存在するORFを見いだ した。この ORF は、2439 bp、812 アミノ酸残基からなる推定分子量 90.2 kDa のタンパク 質をコードすると予想された。また、この ORF の相同性検索を行ったところ、Pseudomonas sp. GM48 の推定 P(3HA)重合酵素 (accession no. WP_007988013) と 92%、 Pseudomonas putida の推定 P(3HA) 重合酵素 (accession no. WP_033040191) と 87%、A. vinelandii DJ の推定 P(3HB) 分解酵素と59%の相同性を示した。しかしながら、これらはゲノムプロジェクトの配列か ら推定されているにすぎない。この ORF の上流域には、推定 SD 配列が存在し、コンピュ ーター解析によって推定プロモーター配列が見いだされた。ORFのドメイン解析を行った ところ、α/βヒドロラーゼドメインを有することが明らかとなり(Fig. 2-2)、この ORF は PHA 重合酵素あるいは菌体内 PHA 分解酵素ではないかと予想された。同様の遺伝子クラ スターを有するA. vinelandii UW136およびその他のPHA 生合成細菌の遺伝子クラスター上

には、このような ORF は存在しないことから、トランスポゾンにより挿入された可能性も 考えられた。しかしながら、この ORF の周辺領域には、トランスポゾンに特徴的な反復配 列を有していないことから、トランスポゾンによる転移ではないと考えられた。また、*phb* locus 上に存在していることから、PHA (特に P(3HB))の生合成に関与している可能性が 示唆された。

PHA granule-associated proteins (PhaI and PhaF) are located. In phb locus, the genes encoding a putative negative regulator protein (PhbF) related to the transcription of phbP gene, phasin (PhbP), an unknown function protein (ORF), a putative regulator protein (PhbR) related to the transcription of The genes located on *pha* and *phb* loci in *Pseudomonas* sp. 61-3 are involved in the biosynthesis of P(3HB-co-3HA) and P(3HB), respectively. In *pha* locus, the genes encoding PHA synthase 1 (PhaC1), PHA depolymerase (PhaZ), PHA synthase 2 (PhaC2), an unknown function protein (PhaD) and phbBAC, NADPH-dependent acetoacetyl coenzyme A reductase (PhbB), β-ketothiolase (PhbA) and PHB synthase (PhbC) are located.

Fig. 2-2 機能不明 ORF のドメイン解析

2-3-2 PHA のモノマー組成と PHA 顆粒結合タンパク質の局在性

Pseudomonas sp. 61-3 は P(3HB)と P(3HB-co-3HA)の 2 種類の PHA を合成し、それぞれの PHA 顆粒には特異的に結合する顆粒結合タンパク質(GAP)が存在する。しかしながら、 これらのGAPが何に起因してPHA顆粒に結合しているかについては、明らかになってい ない。そこで、さまざまなモノマー組成からなる共重合 PHA を合成する Pseudomonas sp. 61-3の組換え株を作製し、PHAのモノマー組成比とGAPの局在性について検討した。ま ず、さまざまなモノマー組成比を有する共重合 PHA を組換え株に合成させ、菌体破砕お よびスクロース密度勾配を行い、PHA 顆粒を回収した。その結果、3HB 分率が 66 mol%以 下の P(3HB-co-3HA)顆粒は、スクロース濃度が 0-1.0 M の境界で、そして、3HB 分率が 87 mol%以上の P(3HB-co-3HA)顆粒は、1.33-1.67 M の境界で確認された。GAP の分離は SDS-PAGE にて行った (Fig. 2-3)。N 末端アミノ酸配列あるいはウエスタンブロット解析 により、60-70 kDa に PHB 重合酵素(PhbC_p.)および PHA 重合酵素 1(PhaC1_p.)を確認し た。一方で、PHA 重合酵素 2(PhaC2p。)に関しては、検出されなかった。これは、これま での松本らの結果と同様であり、PhaC1_{Ps}とPhaC2_{Ps}では、PhaC1_{Ps}が Pseudomonas sp. 61-3 の主要な PHA 重合酵素であることを示唆している⁹。合成された PHA のモノマー組成に ついては、ガスクロマトグラフィーにより分析し、モノマー組成比と検出された GAP に ついては Table 2-20 に示した。その結果、Pseudomonas sp. AC1-TnK 以外の組換え株の PHA 顆粒で PhaC1_{Ps}が検出され、Pseudomonas sp. AC1-TnK の PHA 顆粒では、PhbC_{Ps}が弱く検 出された。SDS-PAGE を行った結果、GA18 (Phal_P) および GA36 (PhaF_P) は、Pseudomonas sp. 61-3 (phbC::tet), Pseudomonas sp. 61-3 (phbC::tet)/pJASc22, Pseudomonas sp. 61-3 (phbC::tet)/pJKSc46-pha および Pseudomonas sp. 61-3 (phbC::tet)/pJKSc54-phabの PHA 顆粒で 検出されたが、Pseudomonas sp. AC1-TnK および Pseudomonas sp. BCG-TcGm/pJKSc54-phab からは検出されなかった。また、本研究で同定した GA24 (PhbP_{ps}) は、 *Pseudomonas* sp. 61-3

(phbC:::tet)/pJKSc54-phab 、 Pseudomonas sp. AC1-TnK および Pseudomonas sp. BCG-TcGm/pJKSc54-phab の PHA 顆粒から検出された。つまり、PhbP_{Ps}は、3HB 分率が 87 mol%以上の P(3HB-co-3HA)顆粒に結合し、3HB 分率が少なくとも 66 mol%以下では結合し なかった。一方、PhaI_{Ps}および PhaF_{Ps}は、炭素数が 6~12 の 3HA 分率が 13 mol%以上の P(3HB-co-3HA)顆粒に結合していた。また、Pseudomonas sp. 61-3 (phbC::tet)/pJKSc54-phab および Pseudomonas sp. BCG-TcGm/pJKSc54-phab においては、phbC_{Ps}遺伝子は破壊されて いるにも関わらず、これらの菌株の P(3HB-co-3HA)顆粒に PhbP_{Ps}は結合していた。したが って、PhbP_{Ps}は、PHB 重合酵素との相互作用ではなく、共重合ポリエステルの 3HB ユニッ トを認識して結合していると考えられた。牛丸らは、Aeromonas caviae において、phasin タンパク質の PhaP_{Ac}が PHA 重合酵素 (PhaC_{Ac}) を活性化すると報告している⁹。また、一 方で、A. caviae の PhaP_{Ac}は、R. eutropha の PHA 重合酵素 (PhaC_{Re}) を活性化しないとも報 告している。これは、R. eutropha や Pseudomonas sp. 61-3 においては、A. caviae とは異なり、phasin タンパク質と PHA 重合酵素は相互作用を示さないと考えられる。

第一章の序論でも述べた通り、*in vivo*において、PHA はアモルファスの状態で存在し、 PHA 顆粒は膜に覆われている。この膜構造について、いくつかのモデルが提唱されている。 まず1つ目のモデルは、PHA 顆粒が、PHA 重合酵素や菌体内 PHA 分解酵素、phasin タン パク質などを含むリン脂質の膜によって覆われているというものである^{1,18}。2つ目のモデ ルは、リン脂質の単層上に PHA 顆粒結合タンパク質が存在しているというものであり、3 つ目のモデルは、リン脂質二重膜の膜上に PHA 顆粒結合タンパク質が存在しているとい うものである^{19,30}。*Pseudomonas* sp. 61-3 の PHA 顆粒結合タンパク質が存在しているとい うものである^{19,30}。*Pseudomonas* sp. 61-3 の PHA 顆粒においては、どのような膜構造が形 成されているかについては明らかにされていないが、PhbP_B (GA24)、PhaI_B (GA18) およ び PhaF_P (GA36) がそれぞれ特異的に P(3HB)と P(3HB-*co*-3HA)顆粒に結合することがわ かっている⁶⁾。また、本研究において、PHA 顆粒結合タンパク質はポリエステル鎖のモノ マー組成比を認識して結合していることが示唆された。これまでに PHA のモノマー組成 の変化によって、PHA 顆粒の膜構造が変化することが報告されている²¹⁾。したがって、 P(3HB-*co*-3HA)共重合ポリエステルのモノマー組成比の変化により、PHA 顆粒を覆ってい る膜構造が変化し、それによって PhbP_P、PhaI_P、および PhaF_Pタンパク質が特異的に結合し ている可能性もある。

Fig. 2-3 SDS-PAGE analysis of native PHA granules isolated from the recombinant strains of *Pseudomonas* sp. 61-3. Lane 1, molecular weight markers; lane 2, *Pseudomonas* sp. 61-3 (*phbC::tet*); lane 3, *Pseudomonas* sp. 61-3 (*phbC::tet*)/pJASc22; lane 4, *Pseudomonas* sp. 61-3 (*phbC::tet*)/pJKSc46-*pha*; lane 5, *Pseudomonas* sp. 61-3 (*phbC::tet*)/pJKSc54-*phab*; lane 6, *Pseudomonas* sp. AC1-TnK; lane 7, *Pseudomonas* sp. BCG-TcGm/pJKSc54-*phab*

	and the	granule-as	ssociated prote	ins				
C terreiro	L	PHA col (me	mposition o1%)		tda iour aclus	of monto		
Juäin	ріазпіца	$\begin{array}{c} 3HB \\ (C_4) \end{array}$	3HA (C ₆ -C ₁₂)	INDICC	ular weight	ol granuc-	associated p	rotelli
Pseudomonas sp. 61-3 (phbC::tet)	none	30	70	62 kDa	48 kDa	36 kDa		18 kDa
Pseudomonas sp. 61-3 (phbC::tet)	pJASc22	49	51	62 kDa	48 kDa	36 kDa		18 kDa
Pseudomonas sp. 61-3 (phbC::tet)	pJKSc46-pha	99	34	62 kDa	48 kDa	36 kDa		18 kDa
Pseudomonas sp. 61-3 (phbC::tet)	pJKSc54-phab	87	13	62 kDa	48 kDa	36 kDa	24 kDa	18 kDa
Pseudomonas sp. AC1-TnK	none	95	5	(69 kDa)	(48 kDa)		24 kDa	
Pseudomonas sp. BCG-TcGm	pJKSc54-phab	66	1	62 kDa	(48 kDa)		24 kDa	
Cells were cultivated at 28°C for 48 h	1 or 72 h (<i>Pseudomonas</i> sp.	AC1-TnK) in MS mediu	um containing	2% (wt/vol)) glucose as	the sole car	pon
source. Minor bands are indicated in	parentheses. 3HB, 3-hydro.	xybutyrate	; 3HA, mediui	n-chain-lengtl	n 3-hydroxy	alkanoate u	nits (C ₆ -C ₁₂)	

Table 2-20 Relationship of the monomer composition of PHA accumulated by recombinant strains of *Pseudomonas* sp. 61-3

2-4 小括

Pseudomonas sp. 61-3 は、P(3HB)ホモポリマーと P(3HB-co-3HA)共重合ポリエステルの2 種類の PHA を菌体内にそれぞれ別々の顆粒として蓄積する²²⁻²⁴。これまでに、*Pseudomonas* sp. 61-3 の P(3HB)と P(3HB-co-3HA)の生合成に関わる遺伝子がクローニングされ、同定さ れている^{6,8,9}。P(3HB)と P(3HB-co-3HA)顆粒には、それぞれ特異的に結合するタンパク質

(GAP) が存在し、PHB および PHA 重合酵素 (PhbC_{Ps} および PhaCl_{Ps}) と PhaI_{Ps}および PhaF_{Ps}が同定されている[®]。本章では、これまで同定されていない P(3HB)顆粒に結合する タンパク質 (GA24) の遺伝子クローニングを行った。また、これらの GAP が何に起因し て PHA 顆粒に結合するかについては明らかになっていない。そこで、さまざまなモノマ 一組成からなる共重合 PHA を合成する *Pseudomonas* sp. 61-3 の組換え株を作製し、PHA の モノマー組成比と GAP の局在性について検討した。

GA24 遺伝子のクローニングを行い、 $phbP_{P_8}$ と命名・同定した。さらに、この $phbP_{P_8}$ 遺 伝子をプローブとして、本菌のゲノム DNA ライブラリーのコロニーハイブリダイゼーシ ョンを行い、 $phbP_{P_8}$ 遺伝子の周辺領域をクローニングした結果、 $phbP_{P_8}$ 遺伝子の下流に $phbF_{P_8}$ 遺伝子を発見した。 $phbP_{P_8}$ 遺伝子の推定翻訳産物は、192 アミノ酸残基からなる推定 分子量 20.4 kDa のタンパク質 (GA24) であり、*Azotobacter* sp. FA8 の PhaP_{As} と 57%¹⁴、*A. vinelandii* AvOP の PhbP_{Av} と 54%⁷の相同性を示し、P(3HB)や P(3HB-co-3HA)顆粒の安定性 に関わる phasin タンパク質であると予想された。一方、 $phbF_{P_8}$ 遺伝子の推定翻訳産物は、 178 アミノ酸残基からなる推定分子量 19.6 kDa であり、*Azotobacter* sp. FA8 の PhaF_{As} と 69%¹⁴、 *A. vinelandii* AvOP の PhbP_{Av} と 68%⁷の相同性を示した。さらに、phasin 遺伝子の転写を調 節するタンパク質であると予想されている *P. denitrificans* の PhaR_{Pd} と 37.5%、*R. eutropha* の PhaR_{Re} と 56%の相同性を示したことと ^{3,15,16}、ドメイン解析の結果から、PhbF_{Ps}は *phbP*_{Ps} 遺伝子の発現を抑制する調節タンパク質として機能していると予想された。

次に、P(3HB)やP(3HB-co-3HA)顆粒に結合するタンパク質 (PhbP_{Ps}、PhaI_{Ps}およびPhaF_{Ps}) の局在性とポリエステルのモノマー組成比との関係について検討した。Figure 2-4 にポリエ ステルのモノマー組成比と GAP の局在性に関するモデルを示した。PhbP_{Ps} (GA24) は、 3HB 分率が 87 mol%以上の P(3HB-co-3HA)顆粒から検出され、一方、PhaI_{Ps} (GA18) およ び PhaF_{Ps} (GA36) は、炭素数が 6~12 の 3HA 分率が 13 mol%以上の P(3HB-co-3HA)顆粒 から検出された (Table 2-20 および Fig. 2-3)。また、PhbP_{Ps}は、*phbC*_{Ps}遺伝子破壊株におい

ても検出され(Fig. 2-4 D)、PhaI_{Ps}およびPhaF_{Ps}は、*phbC*_{Ps}遺伝子のみを破壊した株におい て検出されたが(Fig. 2-4 A and B)、一方で、*phaCI*_{Ps}遺伝子導入株においても検出されて いないことから(Fig. 2-4 D)、これらのPHA 顆粒結合タンパク質は、PHB あるいはPHA 重合酵素との相互作用によりPHA 顆粒に局在しているのではなく、PHA のポリエステル 鎖を直接認識し、モノマー組成比に応じて結合していると予想した。

PHB あるいは PHA 重合酵素、菌体内 PHB あるいは PHA 分解酵素、phasin タンパク質 および調節タンパク質は PHA 顆粒結合タンパク質として知られ、これらは、PHA 生合成 や分解において非常に重要な役割を果たしている。したがって、本研究のように PHA 顆 粒結合タンパク質の同定および機能解析、そしてその性質について検討することは、丈夫 で実用的な PHA を効率的に生合成させるための重要な知見となりうる。

Fig. 2-4 The localization model of the proteins associated with polyester granules accumulated in (A) *Pseudomonas* sp. 61-3 (*phbC::tet*)/pJKSc46-*pha*, (B) *Pseudomonas* sp. 61-3 (*phbC::tet*)/pJKSc54-*phab*, (C) *Pseudomonas* sp. AC1-TnK and (D) *Pseudomonas* sp. BCG-TcGm/pJKSc54-*phab*.

- Griebel, R., Smith, Z. and Merrick, J.M. (1968) Metabolism of poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from *Bacillus megaterium*. *Biochemistry*, 7, 3676-3681
- Gerngross, T.U., Reilly, P., Stubbe, J., Sinskey, A.J and Peoples, O.P. (1993) Immunocytochemical anlysis of poly-β-hydroxybutyrate (PHB) synthase in *Alcaligenes eutrophus* H16: Localization of the synthase enzyme at the surface of PHB granules. J. Bacteriol., 175, 5289-5293
- Maehara, A., Ueda, S., Nakano, H. and Yamane, T. (1999) Analysis of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the *pha* locus of *Paracoccus denitrificans*. J. Bacteriol., 181, 2914-2921
- 4. Prieto, M.A., Bühler, B., Jung, K., Witholt, B. and Kessler, B. (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of *Pseudomonas oleovorans* GPo1 involved in the regulatory expression system for *pha* genes. *J. Bacteriol.*, 181, 858–868
- Ushimaru, K., Motoda, Y. Numata, K. and Tsuge, T. (2014) Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase. Appl. Environ. Microbiol., 80, 2867-2873
- Matsumoto, K., Matsusaki, H., Taguchi, K., Seki, M. and Doi, Y. (2002) Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in *Pseudomonas* sp. 61-3. *Biomacromolecules*, 3, 787-792
- Peralta-Gil, M., Segura, D., Guzman, J., Servin-Conzalez, L. and Espin, G. (2002) Expression of *Azotobacter vinelandii* poly-β-hydroxybutyrate biosynthetic *phbBAC* operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhaR. *J. Bacteriol.*, **184**, 5672–5677

- Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T. and Doi, Y. (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in *Pseudomonas* sp. strain 61-3. J. Bacteriol., 180, 6459-6467
- Matsumoto, K., Matsusaki, H., Taguchi, S., Seki, M. and Doi, Y. (2001) Cloning and characterization of the *Pseudomonas* sp. 61-3 *phaG* gene involved in polyhydroxyalkanoate biosynthesis. *Biomacromolecules*, 2, 142-147
- 10. Simon, R., Priefer, U. and Pühler, A. (1983) A broad host range mobilization system for *in vivo* genetic engineering: Transposon mutagenesis in gram negative bacteria. *Bio/Technology*, 1, 784-791
- 11. Alexeyev, M.F. and Shokolenko, I.N. (1995) Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of Gram-negative bacteria. *Gene*, **160**, 59-62
- 12. Allen, L.N. and Hanson, R.S. (1985) Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of *Methylobacterium* organophilum on methanol. J. Bacteriol., 161, 955-962
- 13. Matsusaki, H., Abe, H., Taguchi, K., Fukui, T. and Doi, Y. (2000) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaCl from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol., 53, 401-409
- 14. Pettinari, M.J., Chaneton, L., Vazques, G., Steinbüchel, A. and Méndez, BS. (2003) Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in *Azotobacter* sp. FA8. *Plasmid*, **50**, 36-44
- 15. Pötter, M., Madkour, M.H., Mayer, F. and Steinbüchel, A. (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in *Ralstonia eutropha* H16. *Microbiology*, **148**, 2413-2426
- 16. Pötter, M., Müller, H. and Steinbüchel, A. (2005) Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in *Ralstonia eutropha* H16. *Microbiology*, **151**, 825-833

17.http://pfam.xfam.org/

- 18. Pieoer-Fürst, U., Madkour, M.H., Mayer, F. and Steinbüchel, A. (1994) Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in *Rhodococcus ruber*. J. Bacteriol., 176, 4328-4337
- 19. Stuart, E.S., Fuller, R.C. and Lenz, R.W. (1995) The ordered macromolecular surface of polyester inclusion bodies in *Pseudomonas oleovotans*. Can. J. Microbiol., 41, 84-93
- 20. Mayer, F. and Hoppert, M. (1997) Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implications for models describing the molecular architecture of this layer. J. Basic Microbiol., **37**, 45-52
- 21. Mayer, F., Madkour, M.H., Pieper-Fürst, U., Wieczorek, R. and Steinbüchel, A. (1996) Electron microscopic observations on the macromolecular organization of the boundary layer of bacterial PHA inclusion bodies. J. Gen. Appl. Microbiol., 42, 445-455
- 22. Kato, M., Bao, H.J., Kang, C.K., Fukui, T. and Doi, Y. (1996) Production of a novel 3-hydroxyalkanoic acids by *Pseudomonas* sp. 61-3 from sugars. *Appl. Microbiol. Biotechnol.*, 45, 363-370
- 23. Kato, M., Fukui, T. and Doi, Y. (1996) Biosynthesis of polyester blends by *Pseudomonas* sp. 61-3 from alkanoic acids. *Bull. Chem. Soc. Jpn.*, **69**, 515-520
- 24. Fukui, T., Kato, M., Matsusaki, H., Iwata, T, and Doi, Y. (1998) Morphological and ¹³C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in *Pseudomonas* sp. 61-3. *FEMS Microbiol. Lett.*, **164**, 219-225

第三章

Pseudomonas sp. 61-3 のポリヒドロキシ

アルカン酸生合成遺伝子クラスター上に存在す

る機能不明遺伝子

3-1 緒言

Pseudomonas sp. 61-3 は、P(3HB)ホモポリマーと P(3HB-co-3HA)共重合ポリエステルの2 種類の PHA を菌体内に合成し、それぞれの PHA 生合成に関わる遺伝子がクローニングさ れ、同定されている¹⁻³。第二章で述べたように、A. vinelandii UW136 では、phbR 遺伝子の すぐ下流に phbP 遺伝子が存在するが、Pseudomonas sp. 61-3 においては、この間が約3 kb 離れていることが明らかとなり、phbP_B遺伝子の上流に phbP_B遺伝子および phbR_B遺伝子 と逆向きに存在する ORF を新たに見いだした。この ORF は、2439 bp、812 アミノ酸残基 からなる推定分子量 90.2 kDa のタンパク質をコードすると予想され、上流域には、推定 SD 配列が存在し、推定プロモーター配列も見いだされている。この ORF は、本菌の phb locus 上に存在することから、PHA 生合成、特に P(3HB)の生合成に関与する可能性がある。ま た、ドメイン解析を行ったところ、 α /βヒドロラーゼドメインを有することが明らかとなり、 この ORF は PHA 重合酵素あるいは菌体内 PHA 分解酵素ではないかと予想された。そこ で、本章では、この ORF の機能を解析するために、ORF 導入株および ORF 破壊株を作製 し、PHA 蓄積率とモノマー組成について調べた。また、菌体内 PHA 分解酵素活性につい て調べるために、PHA 分解酵素をもたない非 PHA 生産菌である大腸菌を用いた *in vivo* ア ッセイを行った。

3-2 実験操作

3-2-1 使用菌株および使用プラスミド

本研究で使用した菌株およびプラスミドを Table 3-1 に示した。

Table 3-1 使用菌株およびプラス	<u>*/</u>	
Strain or plasmid	Relevant characteristics	Source or reference
Strains		
Pseudomonas sp. 61-3	Wild type	JCM 10015, 1)
Pseudomonas sp. 61-3 (phbC::tet)	Inactivation of chromosomal $phbC_{P_S}$ by integration of Tc ^r ; $phbC_{P_S}$ -negative mutant	1)
Pseudomonas sp. ORF-TnK	ORF negative mutant, ORF::kan (Tn10), Km ^r	This study
Pseudomonas putida GPp104	PHA-negative mutant of KT2440	4)
Ralstonia eutropha PHB ⁻ 4	PHA-negative mutant of H16	DSM 541,5)
E. coli DH5α	deoR endaAl gyrA96 hsdR17 ($r_{K}^{-} m_{K}^{+}$) relAl supE thi-1 Δ (lacZYA-argFV169) ϕ 80 Δ acZ Δ M15F λ^{-}	Clontech
E. coli JM109	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 Δ (lac-proAB)/F [*] [traD36 proAB ⁺ lacF ⁴ laxZ \Delta M15]	Novagen
E. coli S17-1	<i>recA</i> and <i>tra</i> genes of plasmid RP4 integrated into the chromosome; auxotrophic for proline and thiamine	(9
E. coli S17-1 (hpir)	π protein encoded by R6K integrated into chromosome	7)
plasmids		
pBluescript II KS ⁺	Ap ^r <i>lacPOZ</i> T7 and T3 promoter	Stratagene
pBSL180	Ap^{r} , Km^{r} , $R6K$ replicon, suicide, $lacI^{q}$, tnp (Tn10), mob ⁺ , IS10	7)
pBBR1MCS-5	Gm ^r , broad host range, <i>lac</i> POZ'	8)
pBBR1MCS-2	Km ^r , broad host range, <i>lacPOZ</i>	8)
pT7Blue T-vector	Ap^r , $lacPOZ$	Novagen
pGEM'-phbCAB	pGEM-T derivative; <i>phb</i> _{Re} promoter, <i>phbC</i> _{Re} , <i>phbA</i> _{Re} , <i>phbB</i> _{Re}	6)
pRGmASc26-ORF	pBBR1MCS-5 derivative; containing ORF	This study
pRKmASc24-ORF	Km ^r , pBBR1MCS-2 derivative; containing ORF	This study

新たに発見した機能不明 ORF が実際に転写されているかについて調べるために、LB 培地および MS 培地で培養した *Pseudomonas* sp. 61-3 より、total RNA を抽出し、RT-PCR (Reverse Transcriptase Polymerase Chain Reaction)を行った。RNA 抽出のためには、一定の 生菌数から RNA を抽出する必要があるため、まずは、*Pseudomonas* sp. 61-3 の生菌数を調 べ、検量線を作成した。RNA の抽出には、Qiagen の RNAprotect Bacteria Reagent および

RNeasy RNA purification キットを用い、DNaseI 処理を同時に行った。RNA 抽出後、その RNA を鋳型として、PrimeScript II High Fidelity RT-PCR Kit(TaKaRa)を用いて逆転写反応 を行い、cDNA を得た(Tables 3-2, 3-3, 3-4, 3-5 and 3-6)。次に、cDNA を鋳型として、PCR を行い、目的遺伝子の mRNA への転写を調べた(Tables 3-7、3-8 and 3-9)。

操作

<変性・アニーリング>

Table 3-2 使用プライマー

PrimerSequencephb-ORF1-r15'-TCATTGAGGCTTTGGACCTTTTGTCCTTT-3'

Table 3-3 反応組成液

Components	Volume (μ L)	Final Concentration
dNTP Mixture	2	10 mM each
phb-ORF1-r1 (10 µM)	0.4	2.5 µM
Template RNA		2 µ g
RNase free water	up to $20 \mu L$	

※ ネガティブコントロール作製のために、反応液量を通常のプロトコール (10 µL) の 2 倍量で調製した。

Table 3-4 反応条件

Temperature	Time
65°C	5 min
4°C	∞

<逆転写反応>

Table 3-5 反応液組成

Components	Sample (μ L)	Negative control (μ L)
変性・アニーリング済み反応液	10	10
5 × PrimeScript II Buffer	4	4
PrimeScript II RT Enzyme Mix	1	-
RNase free water	up to $20 \mu L$	up to $20 \mu L$

Table 3-6 反応条件

Temperature	Time
42°C	15~30 min
95°C	5 min
4°C	∞

<PCR>

Table 3-7 使用プライマー

Primer	Sequence
phb-ORF1-f1(ATG)	5'-ATGGGCCAGGAAGATATTATTGCATCGCAA-3'
phb-ORF1-r1(TGA)	5'- TCATTGAGGCTTTGGACCTTTTGTCCTTT -3'

Table 3-8 反応組成液

Components	Volume (μ L)	Final Concentration
10 × PCR Buffer II	5	1 ×
dNTP Mixture	2	$400\mu\mathrm{M}$
phb-ORF1-f1(ATG) (10 μ M)	0.25	$0.2\mu\mathrm{M}$
phb-ORF1-r1(TGA) (10 μ M)	0.25	$0.2\mu\mathrm{M}$
TaKaRa Ex Taq HS	0.5	
逆転写反応液	5	
滅菌水	up to 50	

Table 3-9 サイクリング条件

	Temperature	Time
Preheat	94°C	2 min
Denature	94°C	1 min
Anneal	52°C	1 min
Extend	72°C	3 min (to step 2×27)
Cool	4°C	∞

3-2-3 機能不明 ORF 導入株の作製

機能不明 ORF の重合活性について調べるために、PHA 合成能欠損株である Pseudomonas putida GPp104、Ralstonia eutropha PHB4 および Pseudomonas sp. 61-3 (phbC::tet)に ORF を導 入した組換え株を作製することにした。ORF の推定プロモーター領域から終始コドンまで を含むように設計した Table 3-10 のプライマーを用い、Pseudomonas sp. 61-3 のゲノム DNA を鋳型として、PCR を行った(Tables 3-11 and 3-12)。PCR で増幅した 2.6-kb の PCR 産物 をApaI および SacI で消化し、pBluscript II KS⁺の ApaI および SacI 部位にクローニングした。 DNA シークエンシングによって、目的遺伝子が導入されていることを確認し、プラスミド pBSASc26-ORF と命名した。さらに、pBSASc26-ORF から 2.6-kb ApaI-SacI 断片を切り出し、 pBBR1MCS-5 の ApaI および SacI 部位にクローニングしたプラスミド pRGmASc26-ORF を 構築した。この pRGmASc26-ORF で E. coli S17-1 を形質転換し、E. coli S17-1 を介した接合 伝達により、PHA 合成能欠損株に導入した組換え株を作製した。これらの組換え株の PHA 蓄積率およびモノマー組成は、ガスクロマトグラフィーにより調べた。

Table 3-10 使用プライマー

Primer	Sequence
phb-ORF1-f3 (ApaI)	5'-CC <u>GGGCCC</u> ^{a)} GTTAGCCTTGATATTGCAGTGC-3'
phb-ORF1-r3 (SacI)	5'- CGAGCTC ^{b)} GTCATTGAGGCTTTGGACCTTTT -3'

^{a)}ApaI recognition site, ^{b)}SacI recognition site
Components	Volume (μ L)	Final Concentration
$2 \times \text{PrimeSTAR GC Buffer (Mg^{2+} plus)}$	25	1 ×
dNTP Mix	4	0.2 mM each
phb-ORF1-f3 (ApaI) (10 µM)	1.5	0.3 µM
phb-ORF1-r3 (SacI) (10 µM)	1.5	0.3 µM
Template DNA	Х	<100 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 3-11 反応組成液

Table 3-12 サイクリング条件

	Temperature	Time
Preheat	98°C	1 min
Denature	98°C	10 sec
Anneal	68°C	$3 \min$ (to step 2×30)
Cool	4°C	∞

• 使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase with GC buffer (TaKaRa)

3-2-4 機能不明 ORF 破壊株の作製

PHA 重合酵素活性について、さらに検討するために、機能不明 ORF 破壊株を作製した。 Table 3-13 のプライマーを合成し、pBS-3.7-kb GA24-r3-phbRDS-f1-R(第二章 2-2-3 参照) を鋳型として、PCR を行った(Tables 3-14 and 3-15)。増幅した ORF の内部 1.2-kb の PCR 産物を pT7Blue T-vector にクローニングし、DNA シークエンシングにより、目的の DNA が挿入されていることを確認した。作製したプラスミドを pT7-1.2-kb BamHI-SacII と命名 した。次に、pT7-1.2-kb BamHI-SacII から 1.2-kb BamHI-SacII を切り出し、IS 配列をもつ自 殺ベクターpBSL180 の BamHI および SacII 部位に挿入した(pSLBS12 と命名)。このプラ スミドを E. coli S17-1(\pir)を介した接合伝達法により、Pseudomonas sp. 61-3 および Pseudomonas sp. 61-3 (phbC::tet)の染色体上の ORF を破壊して、Pseudomonas sp. ORF-TnK および Pseudomonas sp. 61-3 (ORF::kan(Tn10), phbC::tet)をそれぞれ作製した。宿主の目的遺 伝子が破壊されているかについては、ORF 内部 1.2-kb 領域のプローブを作製し、サザンハ イブリダイゼーションによって確認した。これらの組換え株の PHA 蓄積率およびモノマ ー組成は、ガスクロマトグラフィーにより調べた。

Table 3-13 使用プライマー

Primer	Sequence
phb-ORF1-f2 (BamHI)	5'-CGC <u>GGATCC</u> ^{a)} AGCGCCCTTCACCCGGCCAAC-3'
phb-ORF1-r2 (SacII)	5'- TCC <u>CCGCGG</u> ^{b)} TCGCACAGGCTTGTTGCTGAT -3'

^{a)} BamHI recognition site, ^{b)} SacII recognition site

Table 3-14 反応組成液

Components	Volume (μ L)	Final Concentration
$10 \times \text{Ex Taq Buffer (Mg^{2+} plus)}$	5	1 ×
2.5 mM dNTPs	4	0.2 mM each
phb-ORF1-f2 (BamHI) (10μ M)	2.5	0.5 µM
phb-ORF1-r2 (SacII) (10 µM)	2.5	0.5 µM
Template DNA	Х	<500 ng
Ex Taq HS (2.5 units/µL)	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 3-15 サイクリング条件

	Temperature	Time
Preheat	94°C	2 min
Denature	94°C	1 min
Anneal	70°C	30 sec
Extend	72°C	1.5 min (to step 2×30)
Cool	4°C	∞

・使用酵素

TaKaRa ExTaq HS (TaKaRa)

R. eutropha の PHA 生合成遺伝子オペロンを有する pGEM'-*phbCAB* と ORF を挿入した pRKmASc-24-ORF の 2 つのプラスミドで菌体内 PHA 分解酵素を持たない大腸菌を形質転 換し、ORF の菌体内 PHA 分解酵素活性について調べることを試みた。つまり、大腸菌で PHA を合成・蓄積させた後、ORF を IPTG により誘導発現させ、ORF が PHA 分解酵素で あれば、蓄積した PHA の分解がみられるのではないかと考えた。そこで、まず、ORF を *lac* プロモーターの支配下で発現させるために、ORF の native promoter を含まないように設 計したプラスミド pRKmASc24-ORF を作製した。Table 3-16 のプライマーを合成し、 *Pseudomonas* sp. 61-3 のゲノム DNA を鋳型として、PCR を行った(Tables 3-17 and 3-18)。 PCR で増幅した 2.4-kb の PCR 産物を *ApaI* および *SacI* で消化し、pBBR1MCS-2 ベクター の *ApaI* および *SacI* 部位にクローニングした。DNA シークエンシングによって、目的遺伝 子が挿入されていることを確認し、プラスミド pRKmASc24-ORF と命名した。この pRKmASc24-ORF およびプラスミド pGEM'-*phbCAB* を *E. coli* JM109 に導入した組換え株を 作製した。その組換え株の前培養液 1 mL を坂口フラスコ 100 mL (0.5% グルコース含有 LB 培地) に植菌し、37℃ で 24 時間、48 時間、72 時間、96 時間本培養を行った。組換え 株の PHA 蓄積率およびモノマー組成は、ガスクロマトグラフィーにより調べた。

Table 3-16 使用プライマー

Primer	Sequence
phb-ORF1(SD)-f4 (ApaI)	5'-CC <u>GGGCCC</u> ^{a)} ATAACGCCAGGAGATCACCATG-3'
phb-ORF1-r3 (SacI)	5'- C <u>GAGCTC</u> ^{b)} GTCATTGAGGCTTTGGACCTTTT -3'

^{a)}*ApaI* recognition site, ^{b)}*SacI* recognition site

Final Concentration Components Volume (μ L) $5 \times PrimeSTAR Buffer (Mg^{2+} plus)$ 10 $1 \times$ dNTP Mix 4 0.2 mM each phb-ORF1(SD)-f4 (ApaI) ($10 \mu M$) 1.5 0.3 *u*M phb-ORF1-r3 (SacI) $(10 \,\mu M)$ 1.5 $0.3 \mu M$ <200 ng Template DNA Х 0.5 1.25 units/50 µL PrimeSTAR HS DNA Polymerase up to 50 滅菌水

Table 3-17 反応組成液

	Temperature	Time
Preheat	94°C	3 min
Denature	94°C	10 sec
Anneal	70°C	5 sec
Extend	72°C	$3 \min$ (to step 2×30)
Extend	72°C	10 min
Cool	4°C	∞

Table 3-18 サイクリング条件

·使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

3-3 結果および考察

新たに見いだした機能不明 ORF のコンピューター解析の結果、いくつかの推定プロモー ター配列が存在していた。そこで、RT-PCR によって、この ORF が実際に転写されている かについて調べた。*Pseudomonas* sp. 61-3 を LB 培地(栄養豊富条件)および MS 培地(窒 素制限条件)で 8 時間、12 時間および 24 時間培養後、total RNA を抽出し、RT-PCR を行 った。その結果、すべての培地および培養時間で、ORF の転写が確認された(Fig. 3-1)。 したがって、この ORF は、遺伝子として何らかの機能を有していると考えられる。また、 LB 培地でも MS 培地においても転写が確認されたことから、この ORF は構成的に発現し

Fig. 3-1 LB 培地 (左) および MS 培地 (右) における RT-PCR の結果

ドメイン解析の結果、α/βヒドロラーゼドメインを有することが明らかとなっており、こ の ORF は PHA 重合酵素あるいは菌体内 PHA 分解酵素ではないかと予想した。そこで、 まず PHA 重合酵素活性について検討することにした。まず、ORF の推定プロモーター領 域から終始コドンまでを含む領域を pBBR1MCS-5 にクローニングし、プラスミド pRGmASc26-ORF を構築した。そして、PHA 合成能欠損株に pRGmASc26-ORF を導入し て、PHAの蓄積率や組成が変化するかについて検討した。PHA 合成能欠損株である P. putida GPp104、R. eutropha PHB⁻⁴ および Pseudomonas sp. 61-3 (phbC::tet)にそれぞれ ORF を 導入した結果を Tables 3-19、3-20 and 3-21 にそれぞれ示した。なお、P. putida GPp104 およ び Pseudomonas sp. 61-3 (phbC::tet)は48時間、R. eutropha PHB4は72時間培養した。P. putida GPp104 に pRGmASc26-ORF を導入した場合、pBBR1MCS-5 ベクターのみを導入した株と 同様に PHA を合成しなかった(Table 3-19)。R. eutropha PHB4 に ORF を導入した場合、 pBBR1MCS-5 ベクターのみを導入した株ではPHA を全く合成せず、ORF 導入株において はPHAの合成が1.5 wt%以下であった(Table 3-20)。P. putida GPp104は、phbAB遺伝子を 有していないため、3HB-CoA をほとんど供給することができず、PHB 重合酵素を導入し たとしても PHA はほとんど合成されない。しかしながら、R. eutropha PHB4 においては、 phbAB 遺伝子は発現しているため、PHB 重合酵素が存在すれば P(3HB)が合成される。し たがって、ORF は弱い PHA 重合活性を有する可能性がある。また、R. eutropha はゲンタ マイシン耐性の宿主であるが、本研究における ORF の導入において、 ゲンタマイシン耐性

77

の pBBR1MCS-5 ベクターを使用したため、プラスミドが脱落しており、弱い重合活性と なっている可能性もある。今後、別の抗生物質耐性のベクターを用いて検討する必要があ る。一方、*Pseudomonas* sp. 61-3 (*phbC::tet*)に ORF を導入した場合、ORF 導入株においても、 pBBR1MCS-5 ベクターのみを導入した株の PHA 蓄積率とほぼ同じであり、モノマー組成 についても変化が見られなかった(Table 3-21)。以上より、ORF を導入しても、PHA の蓄 積率やモノマー組成に影響を与えなかった宿主もみられたが、ORF が弱いながらも重合活 性を有している可能性も示唆された。

		•				T	1		
	Carhon	Dry cell	PHA		Ηd	A compc	sition (n	nol%)	
plasmid	source	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
pBBR1MCS-5	GlcNa	0.7	0	0	0	0	0	0	0
	C12	1.8	0	0	0	0	0	0	0
pRGmASc26-ORF	GlcNa	0.8	0	0	0	0	0	0	0
	C12	1.3	0	0	0	0	0	0	0
The recombinant strains of <i>P. putida</i> G or 0.5% sodium dodecanoate, respective 3HB 3-hvdroxyhutvrate: 3HHx 3-hvdr	Pp104 were ci ely. oxvhexanoate	ultivated at	30°C for 4	48 h in 1 moate: 3	MS media HD 3-hy	um conta	aining 29	% sodium	gluconate
3HDD, 3-hydroxydodecanoate; 3H5DD	o. 3-hydroxy- <i>c</i>	is-5-dodece	noate	, , , , , , , , , , , , , , , , , , ,					

Table 3-19 Accumulation of PHA by recombinant strains of *Pseudomonas putida* GPp104

			1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			do uno mu			
:	Carbon	Dry cell	PHA		Hd	A compos	ition (mol	(%)	
plasmid	source	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
pBBR1MCS-5	Fru	1.6	0	0	0	0	0	0	0
	C14	1.6	0	0	0	0	0	0	0
pRGmASc26-ORF	Fru	0.8	1.5	100	0	0	0	0	0
	C14	3.3	1.0	100	0	0	0	0	0
The recombinant strains of <i>R</i> sodium tetradecanoate, respec	. <i>eutropha</i> PH tively.	B ⁻⁴ were cult	ivated at 3	0°C for 72	I M in MS	nedium co	ontaining 2	2% fructos	se or 0.5%
3HB, 3-hydroxybutyrate; 3HF	Ix, 3-hydroxyl	nexanoate; 3H	IO, 3-hydro	xyoctanoa	tte; 3HD, 3	-hydroxyd	lecanoate;		
3HDD, 3-hydroxydodecanoat	e; 3H5DD, 3-ŀ	nydroxy-cis-5.	-dodecenoa	te					

Table 3-20 Accumulation of PHA by recombinant strains of *Ralstonia eutropha* PHB⁻⁴

1 able 3-21	Accumulation of PHA b	y recombina	ant strains	ot <i>Pseuc</i>	lomonas	sp. 01-3	(phbC::1	et)	
:	;	Dry cell	PHA		/Hd	A compo	osition (n	ol%)	
plasmid	Medium	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
pBBR1MCS-5	LB (Glc)	4.2	5	44	4	14	21	12	9
	MS (Glc)	1.3	16	27	0	13	36	10	11
	MS (C12)	2.2	58	6	12	41	27	11	0
pRGmASc26-ORF	LB (Glc)	4.6	8	37	1	13	24	15	10
	MS (Glc)	1.3	16	22	0	14	37	12	13
	MS (C12)	2.3	32	9	13	44	27	10	0
The recombinant strains of <i>P</i> ₃ glucose, and MS medium conta 3HB, 3-hydroxybutyrate; 3HH 3HDD, 3-hydroxydodecanoate	seudomonas sp. 61-3 (p aining 2% glucose or 0.5 x, 3-hydroxyhexanoate; ;; 3H5DD, 3-hydroxy-cis	<i>hhbC::tet</i>) w 5% sodium (3HO, 3-hyc s-5-dodecen	ere cultiva dodecanoa hroxyoctan oate	ated at 2 te, respe oate; 3H	.8°C for ctively. D, 3-hyd	48 h in roxydec	LB med anoate;	ium cont	aining 2%

61 3 (nhhC...tat) P f Do. • . + hin PHA h latio < Table 3_71 さらに、ORF の PHA 重合活性について検討するために、Pseudomonas sp. 61-3 と Pseudomonas sp. 61-3 (phbC::tet)の染色体上の ORF を破壊して、合成される PHA について 調べた。染色体上 ORF の破壊は、不必要なベクター部分の挿入を防ぐために、トランスポ ゾンによる相同的組換えによって作製した。Pseudomonas sp. 61-3 の染色体上 ORF を破壊 した Pseudomonas sp. ORF-TnK は野生株と比べて、PHA 蓄積率およびモノマー組成に変化 は見られなかった(Table 3-22)。また、Pseudomonas sp. 61-3 (phbC::tet)の染色体上 ORF を 破壊した Pseudomonas sp. 61-3 (ORF::kan(Tn10), phbC::tet)においても、Pseudomonas sp. 61-3 (phbC::tet)と比べて蓄積率に変化は見られなかったが、MS 培地で培養した場合、3HB 分率 が減少した(Table 3-22)。この結果から、ORF が phaCI 遺伝子を活性化する働きをもつ可 能性も考えられる。以上の ORF 導入株と ORF 破壊株の結果より、機能不明 ORF は PHA 重合酵素ではないと思われたが、補助的な機能(活性が非常に弱い PHA 重合酵素である 可能性を含む)で PHA 生合成に関わっている可能性も考えられる。

そこで、次に ORF の菌体内 PHA 分解酵素活性について検討することにした。非 PHA 生産菌であり、菌体内 PHA 分解酵素を有さない大腸菌を宿主に用いた。まず、大腸菌で PHA を合成・蓄積させ、その後、ORF を IPTG により誘導発現させることで、ORF が菌体 内 PHA 分解酵素であれば、蓄積した PHA の分解がみられると考えた。そこで、ORF を *lac* プロモーターの支配下で発現させるために、ORF の native promoter を含まないように、PCR を行い、得られた 2.4 kb の PCR 産物を pBBR1MCS-2 ベクターにクローニングし、 pRKmASc24-ORF を構築した。そして、このプラスミドとともに *R. eutropha* の PHA 生合 成遺伝子オペロンを有する pGEM'-*phbCAB を E. coli* JM109 に導入した組換え株を作製し、 合成される PHA の蓄積率を調べた。炭素源として、0.5%グルコースを用い、24 時間、48 時間、72 時間および 96 時間培養した。その結果を Table 3-23 に示した。その結果、 pGEM'-*phbCAB* とともに pRKmASc24-ORF を導入した株のPHA 蓄積率は、pGEM'-*phbCAB* とともに pBBR1MCS-2 ベクターのみを導入した株のPHA 蓄積率は、pGEM'-*phbCAB* とともに pBBR1MCS-2 ベクターのみを導入した株とほとんど変わらず、PHA の蓄積率の 減少はみられなかった。しかしながら、この系においては、IPTG 誘導後にグルコースを添 加しているため、PHB 合成時に ORF が発現していたため、分解活性を確認できなかった 可能性もある。今後、培養条件をさらに検討する必要がある。

以上より、本実験では、この ORF の機能を明らかにすることはできなかった。今後、 PHA 重合酵素活性や菌体内 PHA 分解酵素活性について、非 PHA 生産菌である大腸菌を宿 主にするなどして、新たな *in vivo* での実験系を構築し、さらなる検討を行う必要がある。

82

例えば、これまでに *phbAB* 遺伝子と ORF を大腸菌に導入した組換え株を作製し、培養を 試みているが、PHA は合成されていない。今後、さらなる条件検討や宿主の検討を行う必 要がある。また、ORF の翻訳産物を精製し、*in vitro* での PHA 分解試験についても検討す る必要がある。この ORF がα/βヒドロラーゼドメインを有していることから、PHA 重合酵 素あるいは菌体内 PHA 分解酵素であると予想しているが、Protein Homology/analogy Recongnition Engine V 2.0 (Phyre2)¹⁰の立体構造の予測 (Fig. 3-2) によると、リパーゼ活 性をもつ酵素である可能性が高いと予想されているため、菌体外 PHA 分解酵素である可 能性も含めて検討する必要がある。

	Cultivation		Dry cell	PHA		Hd	A compo	osition (r	nol%)	
Strain	time (h)	Medium	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
61-3 (wild strain)	24	LB (Glc)	4.2	16	95	0	trace	2	1	2
	48	MS (Glc)	1.9	25	09	0	Г	19	9	8
(phbC::tet)	24	LB (Glc)	3.6	7	26	0	14	33	13	14
	48	MS (Glc)	1.8	20	52	0	L	19	15	8
ORF-TnK (ORF::kan(Tn10))	24	LB (Glc)	3.2	17	96	0	0	7	1	1
	48	MS (Glc)	1.5	24	59	1	8	19	9	7
(ORF::kan(Tn10), phbC::tet)	24	LB (Glc)	3.2	1	47	0	Г	29	17	trace
	48	MS (Glc)	1.4	25	36	\mathfrak{S}	14	34	11	15
Cells were cultivated at 28°C for 2 ⁴ 3HB, 3-hydroxybutyrate; 3HHx, 3- 3HDD, 3-hydroxydodecanoate; 3H	4 or 48 h in LB r -hydroxyhexano: [5DD, 3-hydroxy	nedium or M ate; 3HO, 3-ŀ <i>'-cis</i> -5-dodec	(S medium on the second	containing moate; 3H	.2% glu D, 3-hyc	cose, resp Iroxydec	pectively anoate;			

Table 3-22 Accumulation of PHA by ORF-disruptants

plasmid (relevant marker)	Cultivation time (h)	Dry cell weight (g/L)	PHA content (wt%)
$pGEM'$ - $phbCAB$ and $pBBR1MCS-2$ ($phbCAB_{Re}$)	24	3.5	17
	48	3.1	23
	72	3.0	22
	96	2.9	24
pGEM'- <i>phbCAB</i> and pRKmASc24-ORF (<i>phbCAB</i> _{Re} , ORF)	24	3.2	15
	48	2.8	15
	72	2.7	16
	96	2.7	17
Cells were cultivated at 37°C for 24 h, 48 h, 72 h or 96 h in LB medium. IPTG was added to the medium at a concentration of 1 mM at 5 h of cultivation the medium at a concentration of 0.5% (w/v) after 8 h of cultivation.	on, and a filter-sterili	zed glucose w	/as added to

• 4 1: IN/100 ha Ľ 4 1 f DUA h 104:0 < Table 2 23

Fig. 3-2 ORF の立体構造予測¹⁰⁾

3-4 小括

これまで、*Pseudomonas* sp. 61-3 の PHA 生合成関連遺伝子として、P(3HB-co-3HA)の生合 成に関与する pha locus と P(3HB)の生合成に関与する phb locus がそれぞれ同定されている。 pha locus については、PHA 生合成に関する遺伝子はすべて明らかになっているが、phb locus については、すべての遺伝子は同定されていない。第二章にて、*Pseudomonas* sp. 61-3 の phb locus 上の phbP_{Ps}遺伝子と phbR_{Ps}遺伝子の間が約 3 kb 離れていることが明らかとなり、こ の領域に新たな機能不明 ORF を見いだした。そこで、本章では、この ORF の機能を明ら かにすることを試みた。

まず、このORFの上流域には、推定SD配列が存在し、推定プロモーター配列が見いだ されたため、ORFが実際に転写されているのかについてRT-PCRにより調べた。その結果、 このORFは、転写されており、遺伝子として何らかの機能を有していると考えられた。さ らには、LB培地(栄養豊富条件)およびMS培地(窒素制限条件)のいずれで培養した 場合においても転写が確認され、このORFは構成的に発現していた。

第二章でのORFのドメイン解析により、このORFは、α/βヒドロラーゼドメインを有す るため、PHA 重合酵素あるいは菌体内 PHA 分解酵素ではないかと予想し、機能解析を試 みた。まず、機能不明 ORF の PHA 重合酵素活性について検討するために、ORF 導入株お よび ORF 破壊株を作製し、合成される PHA の蓄積率やモノマー組成について調べた。プ ラスミド pRGmASc26-ORF を構築し、PHA 合成能欠損株である *P. putida* GPp104、*R. eutropha* PHB⁴ および *Pseudomonas* sp. 61-3 (*phbC::tet*)に ORF を導入した株を作製した。*R. eutropha* PHB⁴ の組換え株でわずかに PHA が合成されたものの、他の組換え株においては PHA の合成や蓄積率の向上はみられなかった。次に、*Pseudomonas* sp. 61-3 と *Pseudomonas* sp. 61-3 (*phbC::tet*)の染色体上の ORF を相同的組換えにより破壊した *Pseudomonas* sp. 61-3 (*phbC::tet*)の染色体上の ORF を相同的組換えにより破壊した *Pseudomonas* sp. 0RF-TnK および *Pseudomonas* sp. 61-3 (ORF::*kan*(Tn10), *phbC::tet*)を作製し、合成される PHA について調べた。その結果、ORF を破壊しても、PHA 蓄積率とモノマー組成に大きな影響を与えなかった。以上の結果より、機能不明 ORF は PHA 重合酵素ではないとも考えられるが、PHA 生合成における補助的な機能(活性が非常に弱い PHA 重合酵素である可能性を含む)を有している可能性も考えられる。

次に、ORFの菌体内 PHA 分解酵素活性について、菌体内 PHA 分解酵素を有さない大腸 菌を宿主として *in vivo* アッセイを行った。プラスミド pRKmASc24-ORF を構築し、 pGEM'-*phbCAB* とともに *E. coli* JM109 に導入し、IPTG 誘導により ORF を発現させること で、PHA 分解酵素活性について検討した。その結果、ORF を導入しても、PHA 蓄積率の 減少はみられなかった。

以上より、本実験では、この ORF の機能を明らかにすることはできなかった。今後、 PHA 重合酵素活性や菌体内 PHA 分解酵素活性について、新たな *in vivo* での実験系を構築 し、さらなる検討を行う必要がある。また、菌体外 PHA 分解酵素である可能性も含めて *in vitro* における PHA 分解試験についても検討する必要がある。

87

- Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T. and Doi, Y. (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-*co*-3-hydroxyalkanoate) biosynthesis genes in *Pseudomonas* sp. strain 61-3. *J. Bacteriol.*, **180**, 6459-6467
- Matsumoto, K., Matsusaki, H., Taguchi, S., Seki, M. and Doi, Y. (2001) Cloning and characterization of the *Pseudomonas* sp. 61-3 *phaG* gene involved in polyhydroxyalkanoate biosynthesis. *Biomacromolecules*, 2, 142-147
- Matsumoto, K., Matsusaki, H., Taguchi, K., Seki, M. and Doi, Y. (2002) Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in *Pseudomonas* sp. 61-3. *Biomacromolecules*, 3, 787-792
- Huisman, G.W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P. and Witholt, B. (1991) Metabolism of poly(3-hydrixyalkanoates) (PHAs) by *Pseudomonas oleovorans*. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. *J. Biol. Chem.*, 266, 2191-2198
- Schlegel, H.G., Lafferty, R. and Krauss, I. (1970) The isolation of mutants not accumulating poly-β-hydroxybytyric acid. *Arch. Microbiol.*, **71**, 283-294
- Simon, R., Priefer, U. and Pühler, A. (1983) A broad host range mobilization system for *in vivo* genetic engineering: Transposon mutagenesis in gram negative bacteria. *Bio/Technology*, 1, 784-791
- Alexeyev, M.F. and Shokolenko, I.N. (1995) Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of Gram-negative bacteria. *Gene*, 160, 59-62
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop II, R.M. and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene*, **166**, 175-176
- Matsusaki, H., Abe, H., Taguchi, K., Fukui, T. and Doi, Y. (2000) Biosynthesis of poly (3-hydroxybutyrate-*co*-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene *phaC1* from *Pseudomonas* sp. 61-3. *Appl. Microbiol. Biotechnol.*, 53, 401-409

10. http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index

第四章

組換え Ralstonia eutropha による PHA 生産

4-1 緒言

Ralstonia eutropha は、増殖が速く、PHA 蓄積能が非常に高い細菌であり、加えて二酸化 炭素を固定することのできる化学合成独立栄養細菌である。この R. eutropha を宿主として 二酸化炭素から実用的な PHA が合成できれば、高度環境調和型 PHA 生産システムを構築 できると考えられる。しかしながら、R. eutropha は、糖や二酸化炭素を唯一の炭素源とし た場合、P(3HB)ホモポリマーしか合成しない。一方、Pseudomonas sp. 61-3 は、糖や脂肪酸 から P(3HB)ホモポリマーと、炭素数 4~12 の 3HA からなる P(3HB-co-3HA)共重合ポリエ ステルの 2 種類の PHA を合成・蓄積する^{1,2)}。そこで、これまでに、低基質特異性 PHA 重 合酵素遺伝子である Pseudomonas sp. 61-3 の phaCl_{Ps}を R. eutropha PHB4 に導入した組換え 株が作製された。この組換え株で、脂肪酸を炭素源として培養すると、P(3HB-co-3HA)を 合成したが、糖を炭素源として培養すると、P(3HB)ホモポリマーしか合成されなかった³⁾。 これは、R. eutropha がβ酸化からの 3HA ユニット供給経路は有しているが、脂肪酸合成経 路からの 3HA ユニット供給経路は有していないことが原因と考えられる。

そこで、本章では、*lac* プロモーターあるいは、*R. eutropha* の PHA 生合成遺伝子の native プロモーターの支配下で、*Pseudomonas* sp. 61-3 の PHA 重合酵素遺伝子 *phaC1*、3-ヒドロ キシアシル ACP:CoA トランスフェラーゼ遺伝子 *phaG* および*R. eutropha* のβ-ケトチオラー ゼ遺伝子 *phbA*、アセトアセチル CoA リダクターゼ遺伝子 *phbB* を導入した組換え株を作製 した。そして、従属栄養条件下あるいは独立栄養条件下にて培養し、これらの組換え株が 合成した PHA の蓄積率とモノマー組成を調べた。

4-2 実験操作

4-2-1 使用菌株および使用プラスミド

以下の菌株およびプラスミドを本研究に用いた(Table 4-1)。

Table 4-1 使用菌株およびプラス		
Strain or plasmid	Relevant characteristics	Source or reference
Strains		
Ralstonia eutropha PHB-4	PHA-negative mutant of H16	DSM 541,4)
Ralstonia eutropha C-TnGmHX8	PHA-negative mutant of H16, $phbC$:: gen, Gm ^r	This study
$E.coli\mathrm{DH5}lpha$	deoR endaAI gyrA96 hsdR17 ($r_{k}^{-} m_{k}^{+}$) relAI supE thi-1 Δ (lacZYA-argFV169) \otimes 80 Δ acZ Δ M15F λ^{-}	Clontech
E. coli JM109	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 Δ (lac-proAB)/F'[traD36 proAB ⁺ lacl ^q laxZ \Delta M15]	Novagen
E. coli S17-1	recA and tra genes of plasmid RP4 integrated into the chromosome; auxotrophic for proline and thiamine	5)
plasmids		
pBBR1MCS-2	Km ^r , broad host range, <i>lacPOZ</i> [']	(9
pBluescript II KS ⁺	Ap ^r <i>lacPOZ</i> T7 and T3 promoter	Stratagene
pBSL182	Ap ^r , Gm ^r , R6K replicon, sucide, <i>lacI</i> ^q , tnp(Tn10), Mob ⁺ , IS10	7)
pMD20-Tvector	Ap ^r , <i>lacZ</i> , pMB1 ori	TaKaRa
pJBB49- phb	pJRD215 derivative; $phb_{ m Re}$ promoter, $phaCI_{ m Ps}$, $phbAB_{ m Re}$	3)
pRKmHS32	pBBR1MCS-2 derivative; P_{P_S} promoter, <i>phaCI</i> _{Ps} , <i>phaG</i> _{Ps}	8)
pBSKB-C1AB	pBluescript II KS ⁺ derivative; <i>lac</i> promoter, <i>phaCl</i> _{Ps} , <i>phbAB</i> _{Re}	This study
pLGm-HX8	pBSL182 derivative containing the 0.8-kb <i>Hin</i> dIII- <i>Xba</i> I fragment of $phbC_{Re}$	This study
$pBBR1''C1_{P_s}AB_{R_e}$	pBBR1MCS-2 derivative; $phb_{ m Re}$ promoter, $phaCI_{ m Ps}, phbAB_{ m Re}$	6)
pRKmKSc-C1AB	pBBR1MCS-2 derivative; <i>lac</i> promoter, <i>phaC1</i> _{Ps} , <i>phbAB</i> _{Re}	This study
pRKmKSc-C1GAB	pBBR1MCS-2 derivative; <i>lac</i> promoter, <i>phaCl</i> _{Ps} , <i>phaG</i> _{Ps} , <i>phbAB</i> _{Re}	This study
pRKmKSc-C1G	pBBR1MCS-2 derivative; <i>lac</i> promoter, <i>phaCl</i> _{Ps} , <i>phaG</i> _{Ps}	This study
pBSHE9	pBluescript II KS ⁺ derivative; containing <i>phaG</i> of <i>Pseudomonas</i> sp. 61-3	This study

I. pRKmKSc-C1AB の作製

まず、*Pseudomonas* sp. 61-3 の PHA 重合酵素遺伝子(*phaCl*_{Ps})、*R. eutropha* の 3HB ユニ ット供給系酵素遺伝子(*phbAB*_{Re})を含むプラスミド pJBB49-*phb* を鋳型として、Table 4-2 のプライマーを用いて、PCR を行い(Tables 4-3 and 4-4)、*R. eutropha* の PHA 生合成遺伝 子の native プロモーターを除いた DNA 領域を増幅させた。これを *KpnI* および *Bam*HI で 制限酵素処理した pBluescript II KS⁺にクローニングし、作製したプラスミドを pBSKB-C1AB と命名した。このプラスミド pBSKB-C1AB を *KpnI* および *SacI* で消化し、 得られた 4.1-kb *KpnI-SacI* 断片を pBBR1MCS-2 にクローニングし、pRKmKSc-C1AB を作製 した。アガロースゲルからの DNA 抽出には、GENECLEAN KIT (BIO 101)を使用した。ま た、作製したプラスミドは、コロニーPCR あるいは制限酵素処理によってインサートチェ ックを行い、DNA シークエンシングを行い、目的遺伝子が導入されていることを確認した。

Table 4-2 使用プライマー

Primer	Sequence
phaC1-KpnI(f)	5'-CGG <u>GGTACC</u> ª)CAATGGAGCGTCGTAGATG-3'
phbCAB-r3(BamHI)	5'- CG <u>GGATCC</u> ^{b)} CTGCAGCCTCGCCCCGCGAGGGCCGCGCTGCA -3'
\ \	

^{a)}*Kpn*I recognition site, ^{b)}*Bam*HI recognition site

Components	Volume (μ L)	Final Concentration
$5 \times \text{PrimeSTAR Buffer (Mg^{2+} plus)}$	10	1 ×
dNTP Mix	4	0.2 mM each
phaC1-KpnI(f) (10 μ M)	1.5	0.3 µM
phbCAB-r3(BamHI) (10 μ M)	1.5	0.3 µM
Template DNA	Х	< 0.01-100 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 4-3 反応組成液

Table 4-4 サイクリング条件

	Temperature	Time
Preheat	94°C	2 min
Denature	94°C	20 sec
Anneal	60°C	5 sec
Extend	72°C	5 min (to step 2×30)
Cool	4°C	∞

· 使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

II. pRKmKSc-C1GAB の作製

まず、pRKmHS32 を鋳型として、Table 4-5 のプライマーを用い、phaG_{Ps} 遺伝子部位を PCR にて増幅し、*Hin*dIII および *Eco*RI で消化した。得られた 0.9-kb *Hin*dIII-*Eco*RI 断片を pBluescript II KS⁺の *Hin*dIII および *Eco*RI 部位にクローニングし、作製したプラスミドを pBSHE9 と命名した。次に pBSHE9 の phaG_{Ps}遺伝子部位を PCR にて増幅し(Tables 4-6、 4-7 and 4-8)、*Sma*I と *Hin*dIII で消化した。得られた 0.9-kb *Sma*I-*Hin*dIII 断片を inverse PCR (Tables 4-9、4-10 and 4-11) によって、*Sma*I および *Hin*dIII 部位を付与した pRKmKSc-C1AB に挿入した。作製したプラスミドは、TaKaRa LA Taq を用いたコロニーPCR および制限酵 素処理によってインサートチェックを行い、DNA シークエンシングを行い、目的遺伝子が 導入されていることを確認した。上記のように、*lac* プロモーターの支配下で、*phaCI*_{Ps}、 *phaG*_{Ps}、*phbA*_{Re}、*phbB*_{Re}遺伝子が発現するように設計したプラスミド pRKmKSc-C1GAB を 構築した。

Table 4-5 使用プライマー

Primer	Sequence
phaG-SD(HindIII)-f	5'-CCC <u>AAGCTT</u> ª)GCATACCCGCTTGCCAGGAGT-3'
phaG-EcoRI(TGA)-r	5'- CG <u>GAATTC</u> ^{b)} CTCAAATTGCCAATGCATGGTG -3'

^{a)}*Hin*dIII recognition site, ^{b)}*Eco*RI recognition site

Primer	Sequence
phaG - SD(HindIII)-f	5'-CCC <u>AAGCTT</u> ª)GCATACCCGCTTGCCAGGAGT -3'
phaG - SmaI(TGA)-f	5'-TCC <u>CCCGGG</u> ^{b)} TCAAATTGCCAATGCATGGTG-3'
a) 11 : 1111 ··· ··	

^{a)}*Hin*dIII recognition site, ^{b)}*Sma*I recognition site

Table 4-7 反応組成液

Components	Volume (μ L)	Final Concentration
$5 \times \text{PrimeSTAR Buffer (Mg^{2+} plus)}$	10	1 ×
dNTP Mix	4	0.2 mM each
phaG - SD(HindIII)-f($10 \mu M$)	1.5	0.3 µM
phaG - SmaI(TGA)-f (10 μ M)	1.5	0.3 µM
Template DNA	Х	< 1 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 4-8 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	1 min (to step 2×30)
Cool	4°C	∞

· 使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

Table 4-9 使用プライマー

Primer	Sequence
phaC1-HindIII(TAA)-r2	5'-CCC <u>AAGCTT</u> ^{a)} CTAGACTGCCTACAACTTAAC-3'
phbA(Re)-SD(SmaI)-f	5'-TCC <u>CCCGGG</u> ^{b)} GTTCCCTCCCGTTTCCATTGA-3'

^{a)}*Hin*dIII recognition site, ^{b)}*Sma*I recognition site

Components	Volume (μ L)	Final Concentration
$5 \times \text{PrimeSTAR Buffer (Mg^{2+} plus)}$	10	1 ×
dNTP Mix	4	0.2 mM each
phaG - SD(HindIII)-f (10 μ M)	1.5	0.3 µM
phaG - SmaI(TGA)-f (10 μ M)	1.5	0.3 µM
Template DNA	Х	< 1 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 4-10 反応組成液

Table 4-11 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	9 min (to step 2×30)
Cool	4°C	∞

・使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

III. pRKmKSc-C1Gの作製

lac プロモーターの支配下で、*phaC1*_{Ps}、*phaG*_{Ps} 遺伝子が発現するように設計したプラス ミド pRKmKSc-C1G を以下のように構築した。pRKmKSc-C1GAB を NdeI、SmaI で消化し、 T4 DNA polymerase によって平滑化後、セルフラーゲーションを行った。作製したプラス ミドは、コロニーPCR および制限酵素処理によってインサートチェックを行い、DNA シ ークエンシングにて目的遺伝子が導入されていることを確認した。

IV. pRKmScK-C1AB の作製

まず、プラスミド pBBR1''C1_{Ps}AB_{Re}を鋳型として PCR を行い、*Sac*I および *Kpn*I 部位を 付与した *phaC1*_{Ps}、*phbA*_{Re}、*phbB*_{Re}を含む断片を得た (Tables 4-12、4-13 and 4-14)。その 4.0-kb 断片を切り出し、dA 付加を行い、pMD20-T vector に挿入した。その後、このプラスミド を SacI および KpnI で消化して得られた 4.0-kb SacI-KpnI 断片を、pBBR1MCS-2 ベクターの SacI および KpnI 部位に挿入した。アガロースゲルからの DNA 抽出には、QIAEX II Gel Extraction Kit (QIAGEN) を使用した。また、作製したプラスミドは、EmeraldAmp PCR Master Mix (TaKaRa) を用いたコロニーPCR および制限酵素処理によってインサートチェックを 行い、DNA シークエンシングにて目的遺伝子が導入されていることを確認した。上記のよ うに、*R. eutropha* の PHA 生合成遺伝子 (*phbCAB* オペロン) の native プロモーターの支配 下で、*phaC1*_{Ps}、*phbA*_{Re}、*phbB*_{Re}遺伝子が発現するように設計したプラスミド pRKmScK-C1AB を構築した。

Table 4-12 使用プライマー

Primer	Sequence
Pro(phbCAB)-SacI-f	5'-C <u>GAGCTC</u> ^{a)} CCCGGGCAAGTACCTTGCCGAC-3'
Ter(phbCAB)-KpnI-r	5'- GG <u>GGTACC</u> ^{b)} CTATGCCCAACAAGGCACTAAG -3'

^{a)}SacI recognition site, ^{b)}KpnI recognition site

Table 4-13 反応組成液

Components	Volume (μ L)	Final Concentration
$2 \times \text{PrimeSTAR GC Buffer (Mg^{2+} plus)}$	25	1 ×
dNTP Mix	4	0.2 mM each
Pro(phbCAB)-SacI-f (10 μ M)	1.5	0.3 µM
Ter (phbCAB)-KpnI-r (10 μ M)	1.5	0.3 µM
Template DNA	Х	< 1 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 4-14 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	5 min (to step 2×30)
Cool	4°C	∞

使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase with GC buffer (TaKaRa)

IIV. pRKmScK-C1GAB の作製

まず pBSHE9 の *phaG*_{Ps} 遺伝子部位を PCR にて増幅し (Tables 4-15、4-16 and 4-17)、0.9-kb 断片を切り出し、TaKaRa Mighty TA-cloning Kit for PrimeSTAR (TaKaRa) を用いて dA 付 加を行い、pMD20-T vector に挿入した。その後、このプラスミドを *Hin*dIII および *Xho*I で 消化して得られた 0.9-kb *Hin*dIII-*Xho*I 断片を inverse PCR (Tables 4-18、4-19 and 4-20) によ って、*Hin*dIII および *Xho*I 部位を付与した pRKmScK-C1AB に挿入した。作製したプラス ミドは、EmeraldAmp PCR Master Mix を用いたコロニーPCR および制限酵素処理によって インサートチェックを行い、DNA シークエンシングにて目的遺伝子が導入されていること を確認した。上記のように、*R. eutropha* の PHA 生合成遺伝子の native プロモーターの支配 下で、*phaC1*_{Ps}、*phaG*_{Ps}、*phbA*_{Re}、*phbB*_{Re} 遺伝子が発現するように設計したプラスミド pRKmScK-C1GAB を構築した。

【TA クローニング】

Taq DNA ポリメラーゼをベースとする PCR 酵素を用いて得られた増幅産物のほとんど は、その3'末端にデオキシリボアデノシン(dA)が一塩基付加されている。これらの PCR 増幅産物をクローニングする方法として、5'末端にデオキシリボチミジン(dT)を一塩基 付加した T ベクターを使用した TA クローニングがある。一方、PrimeSTAR シリーズによ り増幅された PCR 産物のほとんどは、平滑末端となっており、このままでは TA クローニ ングに用いることができない。しかしながら、PCR 産物の 3'末端に dA 付加を行い、TA クローニングに用いることで効率的かつ簡便にクローニングすることができる。今回は、 TaKaRa Mighty TA-cloning Kit for PrimeSTAR (TaKaRa)を用いて dA 付加を行い、ライゲ ーション反応を行った。

Table 4-15 使用プライマー

Primer	Sequence
phaG-SD(HindIII)-f	5'-CCC <u>AAGCTT</u> ®GCATACCCGCTTGCCAGGAGT-3'
phaG-XhoI(TGA)-r	5'-CCGCTCGAG ^b TCAAATTGCCAATGCATGGTG-3'

^{a)}*Hind*III recognition site, ^{b)}*Xho*I recognition site

	••••	TI 1 G I
Components	Volume (μ L)	Final Concentration
$5 \times \text{PrimeSTAR Buffer (Mg^{2+} plus)}$	10	1 ×
dNTP Mix	4	0.2 mM each
phaG-SD(HindIII)-f (10 μ M)	1.5	0.3 µM
phaG-XhoI(TGA)-r (10 µM)	1.5	0.3 µM
Template DNA	Х	< 1 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 4-16 反応組成液

Table 4-17 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	1 min (to step 2×30)
Cool	4°C	∞

・使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

Table 4-18 使用プライマー

Primer	Sequence
phbA(Re)-SD(XhoI)-f2	5'-CCG <u>CTCGAG</u> ^a GTTCCCTCCCGTTTCCATTGAAAGGACT-3'
phaC1-HindIII(TAA)-r3	5'-CCC <u>AAGCTT</u> ^b CTAGACTGCCTACAACTTAACGTTCATG-3'

^{a)}*Xho*I recognition site, ^{b)}*Hin*dIII recognition site

Table 4-19 反応組成液

Components	Volume (μ L)	Final Concentration
$2 \times \text{PrimeSTAR GC Buffer (Mg^{2+} plus)}$	25	1 ×
dNTP Mix	4	0.2 mM each
phbA(Re)-SD(XhoI)-f2 (10 µM)	1.5	0.3 µM
phaC1-HindIII(TAA)-r3 (10 µM)	1.5	0.3 µM
Template DNA	Х	< 1 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 4-20 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	10 min (to step 2×30)
Cool	4°C	∞

·使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase with GC buffer (TaKaRa)

4-2-3 R. eutropha H16 の phbC_{Re}遺伝子破壊株の作製

組換え*R. eutropha*による二酸化炭素からの物性の優れた共重合ポリエステルの生合成を 目指し、*Pseudomonas* sp. 61-3 の低基質特異性 PHA 重合酵素遺伝子(*phaCl*_{Ps})を導入した 組換え株作製のために、*R. eutropha* H16 の PHA 重合酵素遺伝子(*phbC*_{Re})のみを破壊した 株を作製することにした。

まず、*R. eutropha* H16 のゲノム DNA を鋳型として、PCR を行い(Tables 4-21、4-22 and 4-23)、*phbC*_{Re}遺伝子内部の 0.8-kb *Hind*III-XbaI 領域を増幅した。この増幅産物を *Hind*III および XbaI 部位にクローニングした。作製したプラスミドベクターpBluescript II KS*の *Hind*III および XbaI 部位にクローニングした。作製したプラスミドは、制限酵素処理によってインサートチェックを行い、DNA シークエンシングにて目的遺伝子が導入されていることを確認した。このプラスミドを *Hind*III および XbaI で消化して得られた 0.8-kb *Hind*III-XbaI 断片を自殺ベクター pBSL182 の *Hind*III および XbaI で消化して得られた 0.8-kb *Hind*III-XbaI 断片を自殺ベクター pBSL182 の *Hind*III および XbaI 部位にライゲーションし、*E. coli* S17-1(λpir)を形質転換した。制限酵素処理によってインサートチェックを行い、DNA シークエンシングにて目的遺 伝子が導入されていることを確認し、プラスミド pLGm-HX8 と命名した。作製した pLGm-HX8 を *E. coli* S17-1(λpir)を介した接合伝達法(Appendix-2 protocols 参照)により *R. eutropha* H16 へ導入した。接合伝達により *R. eutropha* H16 に導入された組換えプラスミ ド pLGm-HX8 は、IS 配列に挟まれたゲンタマイシン耐性遺伝子と phbC_{Re}遺伝子の一部が トランスポゾンにより *R. eutropha* H16 の染色体上の phbC_{Re}遺伝子の一部と置き換わり、*R. eutropha* H16 の phbC_{Re}遺伝子が破壊される。以上のように、phbC 遺伝子破壊株 *R. eutropha*

C-TnGmHX8 を作製した。

Table 4-21 使用プライマー

Primer	Sequence
phbC-f2 (R. eut) HindIII	5'-CCC <u>AAGCTT</u> ªCGCCAACTTCCTTGCCACCAA-3'
phbC-r2 (R. eut) XbaI	5'-GCTCTAGA ^b TAGGTGTGGCGCAGGTACCAG-3'

^{a)}*Hin*dIII recognition site, ^{b)}*Xba*I recognition site

Table 4-22 反応組成液

Components	Volume (μ L)	Final Concentration
$10 \times LA$ Taq Buffer II (Mg ²⁺ plus)	5	1 ×
dNTP Mix	4	0.2 mM each
phbC-f2 (R. eut) HindIII (10 μ M)	2.5	0.5 µM
phbC-r2 (R. eut) XbaI (10 μ M)	2.5	0.5 µM
Template DNA	Х	<1 µg
TaKaRa LA Taq (5 units/µL)	0.5	2.5 units/50 µL
滅菌水	up to 50	

Table 4-23 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	94°C	1 min
Anneal	64°C	1 min
Extend	72°C	1 min (to step 2×30)
Cool	4°C	∞

使用酵素

TaKaRa LA Taq (TaKaRa)

4-2-4 組換え株の作製

本章で作製したプラスミドpRKmKSc-C1AB、pRKmKSc-C1G、pRKmKSc-C1GAB および pRKmScK-C1GAB を PHA 合成能欠損株である *R. eutropha* PHB⁻⁴ および *R. eutropha* C-TnGmHX8 に *E. coli* S17-1 を介した接合伝達法にて導入し、組換え株を作製した。これ

らの組換え株を従属栄養あるいは独立栄養条件下にて培養した。PHAの定量は、得られた 乾燥菌体に含まれる PHA をメタノリシスによって、3-ヒドロキシアルカン酸メチルエステ ルに変換し、ガスクロマトグラフィー (GC)を用いて行った (Appendix-2 protocols 参照)。

<独立栄養条件下(近畿大学産業理工学部にて実施)>

・培養方法

【前培養】

- 1) 白金耳で掻きとった菌体を滅菌生理食塩水に懸濁した。
- 300 mL 容三角フラスコに滅菌済みの MS 液体培地を 15 mL いれ、2)の菌体を培地に1 mL 接種した(初発の菌濃度は一定となるようにした)。
- 3) 24 時間毎に、混合基質ガスとして H₂:O₂:CO₂= 8:1:1 の割合で封入し、170 (stroke/min)、 30°Cで振とう培養を行った。
- 4) 対数増殖後期の菌体を回収し、フラスコ培養試験を行った。

【フラスコ培養試験】

- 1) 前培養の操作1)、2)を行った。
- 2) 測定を行うごとに基質ガスを封入した。
- 3) 一定培養時間毎に菌体増殖量を分光光度計(600 nm)で測定し、簡易 pH メータで pH を測定した。
- 4-2-5 ポリエステルの性質と物性評価

組換え株のうち、R. eutropha C-TnGmHX8/pRKmKSc-C1GABの乾燥菌体よりポリエステルを抽出し、その性質を調べるとともに物性評価を行った。ポリエステルを乾燥菌体 1.2gからクロロホルム1Lを用いて48時間抽出し、メタノールによる再沈殿を行い、精製した。 分子量はゲル浸透クロマトグラフィーにより分析し、精製した共重合ポリエステルの詳細なモノマー組成については、GC/MSおよびNMR解析により調べた。熱的特性および機械的特性を調べるために、ソルベントキャストフィルムを作製し、少なくとも2週間以上室温でエイジングさせることでクロロホルムを完全に揮発させ、結晶化させた。熱的特性に

102

ついては、Perkin-Elmer Pyris 1 DSC(PerkinElemer, USA)を用いた DSC により調べた。また、そのフィルムを引っ張り試験に供し、機械的特性についても調べた。

4-3 結果および考察

R. eutropha を宿主として、糖および二酸化炭素から物性の優れた P(3HB-co-3HA)を合成 するために、これまでに、低基質特異性 PHA 重合酵素遺伝子である Pseudomonas sp. 61-3 の phaCl を R. eutropha PHB4 に導入した組換え株が作製された。しかしながら、この組換 え株で、脂肪酸を炭素源として培養すると、共重合ポリエステルを合成したが、糖を炭素 源として培養すると、P(3HB)ホモポリマーしか合成されなかった(Table 4-24)(祝迫、稲 田、近藤、未発表)³。これは、R. eutropha が 3HA ユニット供給経路としてβ酸化からの経 路は有しているが、脂肪酸合成経路からの経路は有していないことが原因であると考えら れる。そこで、本章では、lac プロモーターあるいは、R. eutropha の PHA 生合成遺伝子 (phbCAB オペロン)の native プロモーターによって、Pseudomonas sp. 61-3 の phaCl、phaG 遺伝子および R. eutropha の phbAB 遺伝子が発現するように設計したプラスミド (pRKmKSc-C1GAB、pRKmSc-C1G、pRKmScK-C1GAB)を構築し、PHA 合成能欠損株 である R. eutropha PHB4 および R. eutropha C-TnGmHX8 に導入した。そして、従属栄養条 件下あるいは独立栄養条件下にて培養し、これらの組換え株が合成した PHA の蓄積率と モノマー組成を調べた。

103

		Dry cell	PHA		Hd	A compo	sition (mol	(%)	
plasmid	Substrate	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
pBBR1"C1 _{Ps} AB _{Re}	Fructose	1.58	52	100	0	0	0	0	0
$(P_{Re}, phaCI, phbA, phbB)$	Tetradecanoate	0.67	L	44	4	20	18	17	0
pRKmKSc46	Fructose	0.82	12	100	0	0	0	0	0
$(P_{P_s}, phaCI, phbA, phbB)$	Tetradecanoate	0.83	18	31	4	27	22	16	0
pRKmKSc54	Fructose	0.77	2	100	0	0	0	0	0
$(P_{P_s}, phaCI, P_{R_e}, phbA, phbB)$	Tetradecanoate	0.79	17	3	10	27	19	8	0
pRKmKSc-C1AB	Fructose	1.66	34	100	0	0	0	0	0
$(P_{lac}, phaCI, phbA, phbB)$	Tetradecanoate	0.51	L	27	6	19	24	21	0
Cells were cultivated at 30°C for 7	72 h in a mineral salt medium	containing fru	ictose (2%	wt/vol) o	r the sodiu	m salt of 1	etradecano	oate (0.5%	wt/vol) as
the sole carbon source.									

3HB, 3-hydroxybutyrate; 3HHx, 3-hydroxyhexanoate; 3HO, 3-hydroxyoctanoate; 3HD, 3-hydroxydecanoate; 3HDD, 3-hydroxydoccanoate; 3H5DD, 3-hydroxy-cis-dodecanoate *R. eutropha* PHB4の組換え株において、糖を炭素源とした場合、pRKmKSc-CIGAB 導入 株で 3HA 分率が 3.4 mol%導入された P(3HB-co-3HA)共重合ポリエステルが 25 wt%合成・ 蓄積された (Table 4-25)。一方、*R. eutropha* C-TnGmHX8の組換え株においては、*phaG* 遺 伝子が挿入されていない pRKmKSc-CIAB 導入株においては、P(3HB)ホモポリマーしか合 成されず、PHA 蓄積率は 17.9 wt%であった。しかしながら、*phaG* 遺伝子を挿入した pRKmKSc-CIG、pRKmKSc-CIGAB の両導入株で、3HA 分率が 2.4 mol%程度導入された P(3HB-co-3HA)共重合ポリエステルが約 25 wt%合成・蓄積された(Table 4-26)。これは低 密度ポリエチレンと同等の物性を示した場合の P(3HB-co-3HA)共重合ポリエステルのモノ マー組成ともよく似ているため¹⁰、優れた物性の PHA であることが考えられた。そこで、 これらの組換え株のうち、*R. eutropha* C-TnGmHX8/pRKmKSc-CIGAB の乾燥菌体からポリ エステルを抽出し、PHA の物性評価を行った。GC/MS および 500 MHz¹H-NMR、125 MHz ¹³C-NMR の結果、3HB、3HV、3H4MV(3-ヒドロキシ4メチル吉草酸)、3HHx、3HO が それぞれ、97.6 mol%、1.0 mol%、0.3 mol%、0.3 mol%、0.8 mol%であり、中鎖長 3HA ユニ ットの取り込みはわずかであった。また、3HD や 3HDD、3H5DD は含まれておらず、炭 素数が 10 以上の 3HA ユニットの取り込みはみられなかった(Table 4-27)。

ゲル浸透クロマトグラフィーによる分子量分析の結果、数平均分子量 M_nは 32.5 万、重 量平均分子量M_wは71.8 万であった。DSC による熱的性質分析では、ガラス点移転が7.7 °C、 融点が 151 °C、融解エンタルピーは 70.1 J/g であった(data not shown)。また引っ張り試験 による機械的性質の分析では、弾性率が 1057±66 MPa、引張強度は 27±2 MPa、破断伸びは 23±3%であった(Table 4-28)。P(3HB)と比較して、熱的特性は低い値を示した。また機械 的特性でも、P(3HB)よりもやや低い値を示しているが、破断伸びについては、P(3HB)より も高値を示し、わずかではあるが P(3HB)よりは伸縮性のある素材であることが示された。 この物性試験の結果からもわずかに中鎖長の 3HA モノマーが導入されていることがわか った(Tables 4-27 and 4-28)。しかしながら、より物性の優れた PHA を合成するには、さら に 3HA 分率をあげる必要がある。

次に、*R. eutropha* C-TnGmHX8 の組換え株(pRKmKSc-C1G および pRKmKSc-C1GAB 導入株)で、*lac* プロモーターの支配下で、二酸化炭素を唯一の炭素源として培養した結果、 pRKmKSc-C1G 導入株を60時間培養したとき、59.1 wt%のPHA が合成された(Table 4-29)。 一方、pRKmKSc-C1GAB 導入株では、PHA 蓄積率が 20 wt%であった。しかしながら、 pRKmKSc-C1GAB 導入株でわずかな 3HA ユニットの導入がみられたものの、合成された

105

PHA 鎖中への 3HA ユニットの取り込みはほとんどみられなかった。

次に、構成的に遺伝子を発現する *R. eutropha* の *phbCAB* オペロンの native プロモーター によって *Pseudomonas* sp. 61-3 由来 *phaC1*_{Ps}、 *phaG*_{Ps}遺伝子および *R. eutropha* 由来 *phbAB*_{Re} 遺伝子が発現するように設計した pRKmScK-C1GAB を導入した組換え株の結果を Table 4-30 に示した。*R. eutropha* PHB4 の組換え株で、糖を炭素源として培養した場合、21.3 wt% の PHA が合成されが、合成された PHA 鎖中への 3HA ユニットの取り込みはみられなか った。一方、*R. eutropha* C-TnGmHX8 の組換え株においては、*R. eutropha* の native プロモ ーターの支配下では、PHA はほとんど合成されなかった。

	- -	Dry cell	PHA		PF	IA compo	sition (mol	(%)	
plasmid (relevant marker)	Substrate	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
pBBRMCS-2	Fructose	0.58	0	0	0	0	0	0	0
	Tetradecanoate	0.72	0	0	0	0	0	0	0
pRKmKSc-C1AB	Fructose	1.66	34.0	100	0	0	0	0	0
$(\mathrm{P}_{\mathrm{lac}}, phaCl_{\mathrm{Ps}}, phbAB_{\mathrm{Re}})$	Tetradecanoate	0.51	7.0	27	6	19	24	16	0
pRKmKSc-C1G	Fructose	0.84	0.4	100	0	0	0	0	0
$(\mathrm{P}_{\mathrm{lac}}, phaCIG_{\mathrm{Ps}})$	Tetradecanoate	0.62	9.3	36	16	24	16	8	0
pRKmKSc-C1GAB	Fructose	1.10	25.0	96.6	0.3	1.3	1.2	0.4	0.2
$(\mathbf{P}_{ ext{iac}}, phaCIG_{ ext{Ps}}, phbAB_{ ext{Re}})$	Tetradecanoate	0.06	2.5	83	Trace	17	Trace	Trace	0
Cells were cultivated at 30°C for ' as the sole carbon source.	72 h in a mineral salt	medium con	taining fruc	tose (2% w	t/vol) or the	sodium s	alt of tetrac	lecanoate ((5% wt/vol)
3HB, 3-hydroxybutyrate; 3HHx, 3	3-hydroxyhexanoate;	3HO, 3-hydi	roxyoctanoa	te; 3HD, 3-	hydroxyde	canoate; 3	HDD, 3-hy	droxydode	canoate;

107

3H5DD, 3-hydroxy-cis-dodecanoate

I able 4-20 Accumula	ution of PHA by rec	combinant K. 6	eurropha U	- I II CIMHA	s strains nar		$1 \cup_{P_s} and pn$	oAb _{Re} genes	
pimselu	Substrate	Dry cell weight	PHA content			PHA compos	ition (mol%)		
		(g/L)	(wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
$ \begin{array}{l} p RKmKSc-C1AB \\ (P_{\scriptscriptstyle lsc}, phaCI_{\scriptscriptstyle Ps}, phbA, phbB_{\scriptscriptstyle Rc}) \end{array} \end{array} $	Fructose	1.0	17.9	100	0	0	0	0	0
pRKmKSc-C1G (P_{lac} , $phaCI_{Ps}$, $phaG_{Ps}$)	Fructose	1.2	25.8	95.5	0.7	1.3	1.6	0.5	0.4
pRKmKSc-C1GAB (P _{lac} , phaC1, phaG, phbA, phbB)	Fructose	1.4	23.7	95.4	0.8	1.3	1.4	0.8	0.3
Cells were cultivated at 30 °C for 7. 3HB, 3-hydroxybutyrate; 3HHx, 3-1	2 h in a mineral salt hydroxyhexanoate;	t medium cont 3HO, 3-hydr	taining fruc oxyoctanoa	tose (2% w te; 3HD, 3-	t/vol) as the hydroxydec	sole carbon anoate; 3HI	source. D, 3-hydro	xydodecano	ate;

and
$r_{\rm Ps}$
$\sum_{i=1}^{n}$
5
ğ
ų
р
po
Ξ.
S
ĕ
ਸ਼
h;
\mathbf{S}
.п
a
šti
~
$\tilde{\mathbf{x}}$
Ĥ
Ľ
Ë
Q
<u> </u>
-
Ú
r
ų
d
rc
Иt.
e
к. С
R. e
nt R. e
iant R. ei
inant R. ei
binant R. e
mbinant R. e
combinant R. e
ecombinant R. e
recombinant R. e
y recombinant R. e
by recombinant R. e
A by recombinant R. e
HA by recombinant R. e
PHA by recombinant R. e
of PHA by recombinant R. e
t of PHA by recombinant R . e_1
on of PHA by recombinant R. e.
tion of PHA by recombinant $R. e$
ation of PHA by recombinant R. e.
ulation of PHA by recombinant $R. e$
nulation of PHA by recombinant R. e.
umulation of PHA by recombinant R. e.
cumulation of PHA by recombinant R. e.
Accumulation of PHA by recombinant R. e.
Accumulation of PHA by recombinant <i>R</i> . <i>e</i> .
Accumulation of PHA by recombinant <i>R</i> . <i>e</i>
(6 Accumulation of PHA by recombinant R. e.
-26 Accumulation of PHA by recombinant <i>R. e.</i>
4-26 Accumulation of PHA by recombinant <i>R</i> . <i>e</i>
e 4-26 Accumulation of PHA by recombinant <i>R. e</i> .

3H5DD, 3-hydroxy-cis-dodecanoate
R. eutropha C-TnC	imHX8 harbor	ing pRKmK	Sc-C1GAB		
		PHA	composition (r	nol%)	
plasmid	3HB	3HV	3H4MV	3HHx	3HO
	(C4)	(C5)	(C6)	(C6)	(C8)
pRKmKSc-C1GAB (Plac, phaC1, phaG, phbAB)	97.6	1	0.3	0.3	0.8
PHA compositions were determined by GC/MS, and	confirmed by	500 MHz ¹ H	I-NMR and 125	5 MHz ¹³ C-N	MR.

Table 4-27 Characterization of PHA accumulated by recombinant

3HB, 3-hydroxybutyrate; 3HV, 3-hydroxyvalerate; 3H4MV, 3-hydroxy-4-methylvalerate; 3HHx, 3-hydroxyhexanoate; 3HO, 3-hydroxyoctanoate

eutropha C-TnGmHX8
نی
recombinant I
S
1
accumulated
≤
of PH
roperties
P
8
Table 4-2

GAB
\odot
5
ŏ
Ñ.
F
Ц
\mathbf{M}
24
q
bn
3
·=
5
õ
р.
Ы
9
Ч

		<i>6</i> 1			
Somula	Melting	Grass-transition	Young's modulus	Tensile strength	Extension to break
Janipro	temperature (°C)	temperature (°C)	(GPa)	(MPa)	(ϕ)
P(3HB)	176	4	3.5	40	5
P(97.6% 3HB <i>-co</i> -3HA) (This study)	151	×	1.1	27	23
P(94% 3HB-co-3HA) ¹⁰⁾	133	8-	0.2	17	680
bb	176	-10	1.7	38	400
LDPE	130	-30	0.2	10	620

	harboring <i>pha</i> (CIG _{Ps} and phbA	$B_{ m Re}$ genes fr	$\operatorname{om} \operatorname{CO}_2$ as	the sole c	arbon sou	rce			
		Cultivation	Dry cell	PHA		Ηd	lA compc	osition (me	ol%)	
plasmid (relevant marker)	Substrate	time (h)	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
pRKmKSc-C1G	CO_2	30	1.7	23.1	100	0	0	0	0	0
$(\mathrm{P}_{\mathrm{lac}}, phaCIG_{\mathrm{Ps}})$	CO_2	45	3.7	48.1	100	0	0	Trace	0	0
	CO_2	09	4.1	59.1	100	0	0	Trace	0	0
pRKmKSc-C1GAB	CO_2	30	2.3	14.0	9.66	0	0	0.2	0.2	0
$(\mathrm{P}_{\mathrm{lac}}, phaCIG_{\mathrm{Ps}}, phbAB_{\mathrm{Re}})$	CO_2	45	1.8	16.7	98.9	0	0	1.1	0	0
	CO_2	60	2.2	20.0	6.66	0	0	0.1	0	0
Cells were cultivated at 30°C for 30 culture.	0-60 h in a min	eral salt mediur	m under the	atmospher	e of the m	ixture of]	H ₂ , CO ₂ ε	and O ₂ (8	: 1 : 1) by	batch
3HB, 3-hydroxybutyrate; 3HHx, 3-	-hydroxyhexano	oate; 3HO, 3-hy	/droxyoctane	oate; 3HD,	3-hydrox	ydecanoat	e; 3HDD), 3-hydro	xydodeca	noate;

Table 4-29 Accumulation of PHA by recombinant *R. eutropha* C-TnGmHX8 strains

3H5DD, 3-hydroxy-cis-dodecanoate

Table 4-3() Accumulation of	PHA by reco	mbinant <i>R</i> .	<i>eutropha</i> st	trains harb	oring <i>ph</i> a	$lpha CIG_{ m Ps}$ a	nd <i>phbA</i>	$B_{ m Re}$ gene	SS	
		Cultivation	Carbon	Dry cell	AHA		Hd	A compo	sition (me	1%)	
Strain		ume (h)	source	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)	3HDD (C12)	3H5DD (C12')
R. eutropha PHB-4/pRKmS, (P _{Re} , phaC1 _{Ps} , phaA _p	cK-C1GAB _{Re} , <i>phaB</i> _R)	72	Fructose	1.27	21.3	100	0	0	0	0	0
R. eutropha C-TnGmHX8/p (P _{Re} , phaC1 _{Ps} , phaA	RKmScK-C1GAB _{Re} , <i>phaB</i> _{Re})	72	Fructose	0.96	0.1	100	0	0	0	0	0
Cells were cultivated 30° 3HB, 3-hydroxybutyrate; 3H5DD, 3-hydroxy- <i>cis-</i> 5	C for 72 h in MS mee 3HHx, 3-hydroxyhe -dodecenoate	lium containi xanoate; 3HC	ng 2% fruci), 3-hydroxy	tose. yoctanoate;	3HD, 3-h	ydroxyde	canoate;	3HDD,	3-hydro	xydodec	anoate;

gene
$AB_{ m Re}$
qyd
and
Q G
C
pha
oring
harb
trains
eutropha s
5
recombinant
þ
of PHA
tion o
Accumula
Table 4-30

本章では、組換え R. eutropha による脂肪酸合成経路を介した PHA 生産について検討し てきたが、R. eutropha に phaCl_Pおよび phaG_P遺伝子を導入しても、PHA 鎖中に中鎖長 3HA ユニットがあまり取り込まれない原因として、以下の2つを考えた。まず、1つ目と して、PhaG_{Ps} タンパク質が十分に機能していないことが考えられた。R. eutropha C-TnGmHX8/pRKmKSc-C1GAB の乾燥菌体から抽出したポリエステルの GC/MS および NMR 解析の結果、炭素数 10 以上の 3HA ユニットの取り込みがみられなかったことから も、PhaG タンパク質が発現していない、あるいは、PhaG_Pタンパク質の活性発現には、コ ファクターなどの存在が必要である可能性が考えられた。そこで、lac プロモーターによっ て、His-tag 融合 PhaG_{Ps}が発現するように設計したプラスミドを作製し、R. eutropha H16、 R. eutropha C-TnGmHX8, Pseudomonas sp. 61-3, Pseudomonas sp. BCG-TcGm (phbC_{ps}::tet, phaG_P:::gen)および E. coli JM109 に導入した。そして、これらの菌体破砕物から精製した可 溶性画分を用いて、SDS-PAGE およびウエスタンブロット解析を行い、PhaG_{Ps}の発現につ いて調べた。その結果、すべての菌株で、lac プロモーターによる His-tag 融合 PhaG タン パク質の発現が細胞内可溶性画分で検出された。R. eutropha および Pseudomonas sp. 61-3 の組換え株では、33 kDa および 45 kDa の位置に反応が検出された。一方、E. coli JM109 の組換え株においては、33 kDa の位置にのみ検出された(data not shown)。これまでに、 Pseudomonas sp. 61-3の crude extract を用いてウエスタンブロット解析を行うと 45 kDa に反 応が検出されているが、 $phaG_{Ps}$ 遺伝子をセルフクローニングした Pseudomonas sp. 61-3 の crude extract を用いてウエスタンブロット解析をすると、33 kDa および 45 kDa に反応が検 出され、一方、phaG_{Pe}遺伝子を導入した大腸菌では、33 kDa の位置にのみ検出される¹¹。 本研究においても、Pseudomonas sp. 61-3 および E. coli JM109 の組換え株においては、この 報告と同様の結果を示した。また、PhaG_{Ps}の推定分子量は 33 kDa であるので、*R. eutropha* および Pseudomonas sp. 61-3 の組換え株においては、PhaG_{Ps}タンパク質と何らかの物質(約 12 kDa)が結合していると考えられた。このことより、PhaG_{Ps}は、コファクターなどの物 質が結合することで活性型となる可能性も考えられた。あるいは、この分子量の差が 12 kDa であることから、PhaG_Pと結合している物質は、ACP である可能性が考えられる。ACP の分子量は、約10kDa であり、R. eutropha や Pseudmonas sp. 61-3 においては、PhaG_{Ps}はこ の ACP との親和性が高く、強く結合しているが、PHA 非生産菌の大腸菌 ACP は PhaG_{Ps} との親和性が低いのかもしれない。しかしながら、PHA 合成能欠損株である R. eutropha C-TnGmHX8 においても、33 kDa および 45 kDa の位置に反応が検出されていることから、

112

この反応は、菌体内 PHA 合成に関わらず、宿主依存的であるともいえる。また、*R. eutropha* においても、*Pseudomonas* と同じサイズに反応が検出されていることから、脂肪酸合成経路を介した PHA の合成が *Pseudomonas* と同様に *R. eutropha* でも可能であると推察された。

次に、R. eutropha に phaCl_{Ps}および phaG_{Ps}遺伝子を導入しても、PHA 鎖中に中鎖長 3HA ユニットがあまり取り込まれない2つ目の原因として、脂肪酸合成におけるマロニル CoA の菌体内プール量が少ないために、3HA-CoAの供給量も少なくなっていることが考えられ る。これまでに、Corynebacterium glutamicum 由来のアセチル CoA カルボキシラーゼを大 腸菌で過剰に発現させることによって、マロニル CoA の菌体内プール量を増加させ、フラ ボンの合成量を増やすことに成功したという報告がある¹²⁾。同様に、R. eutropha において も菌体内マロニル CoA のプール量を増加させれば、脂肪酸合成経路における(R)-3HA-ACP のプール量が増加し、中鎖長 3HA ユニットを PHA 鎖中に多く取り込める可能性がある。 そこで、P. aeruginosa のゲノム DNA よりアセチル CoA カルボキシラーゼ遺伝子(accA、 accD および accBC)をクローニングし、このアセチル CoA カルボキシラーゼ遺伝子とと もに phaC1_{Ps}、 phaG_{Ps}、 phbAB_{Re} 遺伝子を PHA 合成能欠損株である R. eutropha PHB4 および R. eutropha C-TnGmHX8 に導入した組換え株を作製し、従属栄養条件下での PHA 合成につ いて検討した。その結果、アセチル CoA カルボキシラーゼ遺伝子導入株では、生育が抑制 され、PHA 蓄積率が低下した(data not shown)。アセチル CoA カルボキシラーゼはビオチ ン依存性であるので、ビオチンや、TCA サイクルの回転を促進するためのクエン酸やパン トテン酸の培地への添加が必要かもしれない。Table 4-27 に示した通り、GC/MS および NMR 解析の結果、合成された PHA 鎖中に 3H4MV¹³が取り込まれていることや炭素数 10 以上の 3HA ユニットの取り込みがみられないことから、脂肪酸合成経路を介して (R)-3HA-CoA は供給されていないと考えられた。最近、PhaG は CoA トランスフェラーゼ 活性よりもチオエステラーゼ活性が高いという報告があり¹⁴、PhaGは、(R)-3HA-ACPか ら(R)-3HA-CoA を生成するよりもむしろ(R)-3-ヒドロキシアルカン酸((R)-3HA)を生成す ることがわかった。したがって、中鎖長の3HA ユニットが導入された PHA を合成するた めには、PhaC1_{Ps}および PhaG_{Ps}だけでなく(R)-3-ヒドロキシアシル CoA ((R)-3HA-CoA) リ ガーゼが必要であるといえる。そこで、次の第五章では、(R)-3HA-CoA リガーゼ遺伝子を クローニングし、PHA 重合酵素およびモノマー供給系に関わる酵素遺伝子を導入した大腸 菌組換え株を作製し、中鎖長の 3HA ユニットが導入された共重合ポリエステルの合成を試 みる。

本章では、*lac* プロモーターあるいは構成的に遺伝子を発現する *R. eutropha* の PHA 生合 成遺伝子 (*phbCAB* オペロン)の native プロモーターの下流に *phaCl*_{Ps}, *phaG*_{Ps} および *phbAB*_{Re} 遺伝子を導入した *R. eutropha* の組換え株を作製し、*R. eutropha* による脂肪酸合成経路を介 した糖および二酸化炭素からの PHA 生産について検討した。

まず、*R. eutropha* PHB4 を宿主とした場合、*lac* プロモーターの支配下で糖を炭素源とし て培養すると、3HA 分率が 3.4 mol%導入された P(3HB-*co*-3HA)共重合ポリエステルが 25 wt%合成された。一方、*R. eutropha* の native プロモーターの支配下で糖を炭素源として培 養した場合、21.3 wt%の PHA が蓄積されたが、合成された PHA 鎖中への中鎖長 3HA ユニ ットの取り込みはみられなかった。

次に、*R. eutropha* C-TnGmHX8 を宿主として、*lac* プロモーターの支配下で糖を炭素源として培養した場合、pRKmKSc-C1G および pRKmKSc-C1GAB 導入株で、炭素数 6~12 の 3HA ユニットが 5 mol%程度導入された P(3HB-co-3HA)共重合ポリエステルが約 25 wt%合成された。そこで、この組換え株のうち、*R. eutropha* C-TnGmHX8/pRKmKSc-C1GAB の乾燥菌体からポリエステルを抽出し、GC/MS、GPC、[']H-NMR、¹³C-NMR、DSC、引っ張り試験を行い、このポリエステルの物性評価を行った。その結果、3HB 分率が 97.6 mol%、3HA 分率が 2.4 mol%で、中鎖長 3HA ユニットの取り込みはわずかであり、炭素数 10 以上の 3HA ユニットの取り込みはみられなかった。これは、PhaG 酵素が十分に機能していないことが考えられる。また、物性に関しては、破壊伸びが P(3HB)が 5%であるのに対して、このポリエステルは 23±3%であり、P(3HB)よりは、若干ではあるが、伸縮性のある素材であると考えられた。しかしながら、より物性の優れた PHA を合成するためには、さらに中鎖長 3HA 分率を高める必要がある。一方、*R. eutropha* C-TnGmHX8 を宿主として、*R. eutropha* の native プロモーターの支配下で糖を炭素源として培養した場合、PHA はほとんど合成されなかった。

また、R. eutropha C-TnGmHX8 を宿主として、lac プロモーターの支配下で二酸化炭素を 唯一の炭素源として培養した場合、約 60%の PHA が合成されが、合成された PHA 鎖中へ の中鎖長 3HA ユニットの取り込みはほとんどみられなかった。

今後、PHA 生合成における脂肪酸合成経路の代謝フラックスについてもさらなる検討を 行う必要がある。最近、PhaG は CoA トランスフェラーゼ活性よりもチオエステラーゼ活 性が高いと報告された¹⁴⁾。したがって、中鎖長の 3HA ユニットが導入された PHA を合成 するためには、PhaC1_{Ps}およびPhaG_{Ps}だけでなく(*R*)-3-ヒドロキシアシルCoA((*R*)-3HA-CoA) リガーゼが必要であるといえる。そこで、第五章では、 PHA 重合酵素遺伝子および (*R*)-3HA-CoA リガーゼ遺伝子を導入した大腸菌の PHA 生合成について検討する。

- Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T. and Doi, Y. (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-*co*-3-hydroxyalkanoate) biosynthesis genes in *Pseudomonas* sp. strain 61-3. *J. Bacteriol.*, **180**, 6459-6467
- Fukui, T., Kato, M., Matsusaki, H., Iwata, T, and Doi, Y. (1998) Morphological and ¹³C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in *Pseudomonas* sp. 61-3. *FEMS Microbiol. Lett.*, 164, 219-225
- Matsusaki, H., Abe, H., Taguchi, K., Fukui, T. and Doi, Y. (2000) Biosynthesis of poly (3-hydroxybutyrate-*co*-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene *phaC1* from *Pseudomonas* sp. 61-3. *Appl. Microbiol. Biotechnol.*, 53, 401-409
- Schlegel, H.G., Lafferty, R. and Krauss, I. (1970) The isolation of mutants not accumulating poly-β-hydroxybytyric acid. *Arch. Microbiol.*, **71**, 283-294
- Simon, R., Priefer, U. and Pühler, A. (1983) A broad host range mobilization system for *in vivo* genetic engineering: Transposon mutagenesis in gram negative bacteria. *Bio/Technology*, 1, 784-791
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop II, R.M. and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene*, 166, 175-176
- Alexeyev, M.F. and Shokolenko, I.N. (1995) Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of Gram-negative bacteria. *Gene*, 160, 59-62
- Matsumoto, K., Nakae, S., Taguchi, K., Matsusaki, H., Seki, M. and Doi, Y. (2001) Biosynthesis of poly(3-hydroxybutyrate-*co*-3-hydroxyalkanoates) copolymer from sugars by recombinant *Ralstonia eutropha* harboring the *phaC1*_{Ps} and the *phaG*_{Ps} genes of *Pseudomonas* sp. 61-3. *Biomacromolecules*, 2, 934-939
- Tsuge, T., Yano, K., Imazu, S., Numata, K., Kikkawa, Y., Abe, H., Taguchi, S. and Doi, Y. (2005) Biosynthesis of polyhydroxyalkanoate (PHA) copolymer from fructose using wild-type and laboratory-evolved PHA synthases. *Macromol. Biosci.*, 5, 112-117

- Matsusaki, H., Abe, H. and Doi, Y. (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-*co*-3-hydroxyalkanoates) by recombinant strains of *Pseudomonas* sp. 61-3. *Biomacromolecules*, 1, 17-22
- 松本謙一郎(2002) 微生物によるポリヒドロキシアルカン酸生産機構の解析とその応用、博士論文、東京大学大学院
- Miyahisa, I., Kaneko, M., Funa, N., Kawasaki, H., Kojima, H., Ohnishi, Y. and Horinouchi, S. (2005) Efficient production of (2S)-flavanones by *Escherichia coli* containing an artificial biosynthetic gene cluster. *Appl. Microbiol. Biotechnol.*, 68, 498-504
- Tanadchangsaeng, N., Kitagawa, A., Yamamoto, T., Abe, H. and Tsuge, T. (2009) Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. *Biomacromolecules*, **10**, 2866-2874
- Wang, Q., Tappel, R.C., Zhu, C. and Nomura, C.T. (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoate by recombinant *Escherichia coli* via inexpensive non-fatty acid feedstocks. *Appl. Environ. Microbiol.*, **78**, 519-527

第五章

大腸菌を宿主とした糖からの生分解性 共重合ポリエステルの生合成 ~(R)-3-ヒドロキシアシル CoA リガーゼ 遺伝子のクローニング~ 第四章では、化学合成独立栄養細菌 *Ralstonia eutropha* を宿主として、糖および二酸化炭 素からの炭素数 4~12 の(*R*)-3-ヒドロキシアルカン酸 (3HA) ユニットからなる物性の優れ た P(3HB-*co*-3HA)共重合ポリエステルの合成を試みた。しかしながら、合成された PHA 鎖 中への中鎖長 3HA ユニットの取り込みは極わずかであり、実用的なポリエステルの合成に は至らなかった。 (*R*)-3-ヒドロキシアシル ACP:CoA トランスフェラーゼとして知られて いた PhaG は、トランスフェラーゼ活性よりもチオエステラーゼ活性が高いことが最近報 告された¹⁾。したがって、脂肪酸合成経路を介して中鎖長 3HA ユニットを供給するために は、PhaC1_{Ps}および PhaG_{Ps}に加えて、(*R*)-3-ヒドロキシアシル CoA ((*R*)-3HA-CoA) リガー ゼが必要であるといえる。

大腸菌は、増殖が速く、菌体内 PHA 分解酵素をもたないことやその生化学的および遺 伝的性質が明らかとなっていることから、PHA 生産の宿主として有用であるといえる。ま た、大腸菌を宿主とした共重合ポリエステルの生合成について、炭素数 3~5 の短鎖長 3HA ユニットの共重合体や中鎖長の PHA 合成に関してはいくつか報告されているが、脂肪酸 分解経路(β酸化)を利用した報告に限られており、脂肪酸合成経路を介して、 P(3HB-co-3HA)共重合ポリエステルが合成された報告例はほとんどなく、Tappel らの報告 だけである²)。Wang らは、*Pseudomonas putida* KT2440の PP0763の推定翻訳産物が、*in vitro* で(*R*)-3HA-CoA リガーゼ活性を有する *Pseudomonas oleovorans* 由来の AlkK と相同性が高い ことから、PP0763 遺伝子をクローニングし、PP0763の翻訳産物が(*R*)-3HA-CoA リガーゼ 活性を有することを明らかにした¹⁾。その後、Tappel らが *Pseudomonas* sp. 61-3 の改変 PHA 重合酵素遺伝子 *phaC1(STQK)*³⁾とともに、3HB ユニット供給系酵素遺伝子 *phbAB、phaG* 遺 伝子および PP0763 遺伝子を導入した大腸菌組換え株を作製し、グルコースから P(3HB-co-3HA)共重合ポリエステルの合成に成功している²。

本章では、Pseudomonas aeruginosa PAOより(R)-3HA-CoAリガーゼ活性を有する新たな 酵素を発見した。そして、その遺伝子をクローニングし、PHA 重合酵素遺伝子とともにモ ノマー供給系に関わる酵素遺伝子を導入した大腸菌組換え株を作製し、糖から生分解性 P(3HB-co-3HA)共重合ポリエステルの合成を試みた。

119

5-2 実験操作

5-2-1 使用菌株および使用プラスミド

以下の菌株およびプラスミドを本研究に用いた(Table 5-1)。

Table 5-1 使用菌株およびプラ	テスミド	
Strain or plasmid	Relevant characteristics	Source or reference
Strains		
P. aeruginosa PAO	Wild type	DSM 1707
P. putida KT2440	Wild type	NBRC 100650
E. coli DH5α	deoR endaAl gyrA96 hsdR17 (r_{k}^{-} m _k ⁺) relAl supE thi-1 Δ (lacZYA-argFV169) ϕ 80 Δ acZ Δ M15F λ -	Clontech
E. coli JM109	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 ∆(lac-proAB)/F'[traD36 proAB ⁺ lac ^P laxZ∆M15]	Novagen
E. coli LS5218	fadR601 atoC2(con)	4)
Plasmids		
pBluescript II KS ⁺	Ap^{r} , $lacPOZ$ T7 and T3 promoter	Stratagene
pMD20-T vector	Ap ^r , <i>lacZ</i> , pMB1 ori	TAKARA BIO
pBBR1MCS-2	Km ^r , broad host range, <i>lac POZ</i>	5)
pBBR1MCS-3	Tc ^r , broad host range, <i>lac POZ</i>	5)
pJRD215	Cosmid; Km ^r Sm ^r RSF1010 replicon; Mob ⁺	(9
pRTcASc-MCL(Pa)	pBBR1MCS-3 derivative; lac promoter, PA3924 from P. aeruginosa DSM 1707	This study
pRTcKSc-MCL(Pp)	pBBR1MCS-3 derivative; lac promoter, PP0763 from P. putida NBRC 100650	This study
pBSHE9	pBluescript II KS ⁺ derivative; containing <i>phaG</i> of <i>Pseudomonas</i> sp. 61-3	This study
pJScK-C1GAB	pJRD215 derivative; P_{R_e} promoter, <i>phaCI</i> _{Ps} , <i>phaG</i> _{Ps} , <i>phbA</i> _{Re} , <i>phbB</i> _{Re}	This study
pJScK-C1G	pJRD215 derivative; P_{Re} promoter, $phaCI_{Ps}$, $phaG_{Ps}$	This study

ó ‡ # 1

I. pJScK-C1GAB の作製

まず、プラスミド pRKmScK-C1GAB を鋳型として、Table 5-2 のプライマーを用いて、 PCR を行い(Tables 5-3 and 5-4)、*R. eutropha* の PHA 生合成遺伝子の native プロモーター、 *phaC1*_{Ps}遺伝子、*phaG*_{Ps}遺伝子および *phbAB*_{Re}遺伝子を含む領域を増幅させた。これを SacI および *Kpn*I で制限酵素処理後、pJRD215 ベクターの SacI および *Kpn*I 部位にクローニング し、プラスミド pJScK-C1GAB を作製した。アガロースゲルからの DNA 抽出には、QIAEX II Gel Extraction Kit (QIAGEN) を使用した。また、作製したプラスミドは、EmeraldAmp PCR Master Mix(TaKaRa)を用いたコロニーPCR および制限酵素処理によってインサートチェ ックを行い、DNA シークエンシングにて目的遺伝子が導入されていることを確認した。

Table 5-2 使用プライマー

	Sequence
M13 Forward primer	5'-GTAAAACGACGGCCAGT-3'
M13 Reverse primer	5'-CAGGAAACAGCTATGAC-3'

Table 5-3 反応組成液

Components	Volume (μ L)	Final Concentration
$2 \times \text{Gflex PCR Buffer (Mg^{2+}, dNTP plus)}$	25	1 ×
M13 Forward primer (10 μ M)	1	$0.2\mu M$
M13 Reverse primer $(10 \mu\text{M})$	1	$0.2\mu M$
Template DNA	Х	< 500 ng
Tks Gflex DNA polymerase	0.5	1.25 units/50 µL
	up to 50	

Table 5-4	サイクリ	ング条件
Table 5-4	サイクリ	ング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	55°C	15 sec
Extend	68°C	2.5 min (to step 2×30)
Cool	4°C	∞

使用酵素

•

TaKaRa Tks Gflex DNA polymerase (TaKaRa)

II. pJScK-C1Gの作製

まず、プラスミド pRKmScK-CIGAB を鋳型として、Table 5-5 のプライマーを用いて、 PCR を行い(Tables 5-6 and 5-7)、*R. eutropha* の PHA 生合成遺伝子の native プロモーター、 *phaCl*_{Ps}遺伝子および *phaG*_{Ps}遺伝子を含む領域を増幅させた。これを SacI および KpnI で制 限酵素処理後、pJRD215 ベクターの SacI および KpnI 部位にクローニングし、プラスミド pJScK-CIG を作製した。アガロースゲルからの DNA 抽出には、QIAEX II Gel Extraction Kit を使用した。また、作製したプラスミドは、EmeraldAmp PCR Master Mix を用いたコロニ ーPCR および制限酵素処理によってインサートチェックを行い、DNA シークエンシング にて目的遺伝子が導入されていることを確認した。

Table 5-5 使用プライマー

Primer	Sequence
M13 Forward primer	5'-GTAAAACGACGGCCAGT-3'
phaG-KpnI (TGA)-r	5'-CGGGGTACC ^{a)} TCAAATTGCCAATGCATGGTG-3'
^{a)} <i>Kpn</i> I recognition site	

Table 5-6 反応組成液

Components	Volume (μ L)	Final Concentration
$2 \times \text{PrimeSTAR GC Buffer (Mg^{2+} plus)}$	25	1 ×
dNTP Mix	4	0.2 mM each
M13 Forward primer $(10 \mu M)$	1.5	0.3 µM
phaG-KpnI (TGA)-r (10μ M)	1.5	0.3 µM
Template DNA	Х	< 1 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 5-7 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	4 min (to step 2×30)
Cool	4°C	∞

• 使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase with GC buffer (TaKaRa)

III. pRTcASc-MCL(Pa)の作製

P. putida KT2440 の PP0763 の翻訳産物が(*R*)-3HA-CoA リガーゼ活性を有するとの報告が あり¹⁾、ゲノム情報がすべて明らかとなっている *P. aeruginosa* PAO1 のゲノムを調べたと ころ、推定中鎖長アシル CoA リガーゼ (PA3924 の推定翻訳産物)が PP0763 の翻訳産物 とアミノ酸レベルで 82%の相同性を示した。そこで、この PA3924 遺伝子をクローニング することとした。

まず、*P. aeruginosa* DSM 1707 のゲノム DNA を鋳型として、Table 5-8 のプライマーを用 いて、PCR を行い(Tables 5-9 and 5-10)、PA3924 遺伝子を増幅させた。得られた 1.8 kb の 増幅産物を切り出し、TaKaRa Mighty TA-cloning Kit for PrimeSTAR(TaKaRa)を用いて dA 付加を行い、pMD20-T vector に挿入した。その後、このプラスミドを *Apa*I および *Sac*I で 消化し、pBBR1MCS-3 ベクターの *Apa*I および *Sac*I 部位にクローニングし、プラスミド pRTcASc-MCL(Pa)を作製した。アガロースゲルからの DNA 抽出には、QIAEX II Gel Extraction Kit を使用した。また、作製したプラスミドは、EmeraldAmp PCR Master Mix を 用いたコロニーPCR および制限酵素処理によってインサートチェックを行い、DNA シー クエンシングにて目的遺伝子が導入されていることを確認した。

Table 5-8 使用プライマー

Primer	Sequence
MCL-ApaI-f (PAO1)	5'- <u>GGGCCC</u> ^{a)} GCTCCCAGGTGTACGCCCCATGCT-3'
MCL-SacI-r (PAO1)	5'- <u>GAGCTC</u> ^{b)} GTGTAGGAAAGCCCCGTCAGACGG-3'

^{a)}ApaI recognition site, ^{b)}SacI recognition site

Components	Volume (µL)	Final Concentration
$5 \times PrimeSTAR Buffer (Mg^{2+} plus)$	10	1 x
dNTP Mix	4	0.2 mM each
MCL-ApaI-f (PAO1) (10 μ M)	1.5	0.3 µM
MCL-SacI-r (PAO1) ($10 \mu M$)	1.5	0.3 µM
Template DNA	Х	< 200 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 5-9 反応組成液

Table 5-10 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	$2 \min$ (to step 2×30)
Cool	4°C	∞

· 使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase (TaKaRa)

IV. pRTcKSc-MCL(Pp)の作製

本研究でクローニングした *P. aeruginosa* PAO1 の PA3924 遺伝子の推定翻訳産物が (*R*)-3HA-CoA リガーゼ活性を有するかについて検討するために、対照として *P. putida* KT2440 の PP0763 遺伝子を pBBR1MCS-3 ベクターに挿入したプラスミドを構築した。

まず、*P. putida* NBRC 100650 のゲノム DNA を鋳型として、Table 5-11 のプライマーを用 いて、PCR を行い(Tables 5-12 and 5-13)、PP0763 遺伝子を増幅させた。得られた 1.7 kb の増幅産物を切り出し、TaKaRa Mighty TA-cloning Kit for PrimeSTAR を用いて dA 付加を行 い、pMD20-T vector に挿入した。その後、このプラスミドを *Kpn*I および *Sac*I で消化し、 pBBR1MCS-3 ベクターの *Kpn*I および *Sac*I 部位にクローニングし、プラスミド pRTcKSc-MCL(Pp)を作製した。アガロースゲルからの DNA 抽出には、QIAEX II Gel Extraction Kit を使用した。また、作製したプラスミドは、EmeraldAmp PCR Master Mix を 用いたコロニーPCR および制限酵素処理によってインサートチェックを行い、DNA シー

クエンシングにて目的遺伝子が導入されていることを確認した。

Table 5-11 使用プライマー

Primer	Sequence
PP0763-KpnI-f (KT2440)	5'- <u>GGTACC</u> ª'TTTTCAGAAAAGGGATCCCC-3'
PP0763-SacI-r (KT2440)	5'- <u>GAGCTC</u> ^{b)} TTACAACGTGGAAAGGAACG-3'

^{a)}*Kpn*I recognition site, ^{b)}*Sac*I recognition site

Table 5-12 反応組成液

Components	Volume (μ L)	Final Concentration
$2 \times \text{PrimeSTAR GC Buffer (Mg^{2+} plus)}$	25	1 ×
dNTP Mix	4	0.2 mM each
PP0763-KpnI-f (KT2440) (10 µM)	1.5	0.3 µM
PP0763-SacI-r (KT2440) (10 µM)	1.5	0.3 µM
Template DNA	Х	< 200 ng
PrimeSTAR HS DNA Polymerase	0.5	1.25 units/50 µL
滅菌水	up to 50	

Table 5-13 サイクリング条件

	Temperature	Time
Preheat	94°C	3 min
Denature	98°C	10 sec
Anneal	68°C	$2 \min$ (to step 2×30)
Cool	4°C	∞

・使用酵素

TaKaRa PrimeSTAR HS DNA Polymerase with GC buffer (TaKaRa)

5-2-3 大腸菌組換え株の作製とPHA 生産

P(3HB-co-3HA)共重合ポリエステルを合成するために、本章 5-2-2 で作製したプラスミド pRTcASc-MCL(Pa)あるいはpRTcKSc-MCL(Pp)とともにpJScK-C1GAB を *E. coli* JM109 ある いは *E. coli* LS5218 に導入した組換え株を作製した。また、PA3924 遺伝子の推定翻訳産物 が中鎖長(*R*)-3HA-CoA を供給する(*R*)-3HA-CoA リガーゼ活性を有するかについてさらに検 討するために、pRTcASc-MCL(Pa)あるいは pRTcKSc-MCL(Pp)とともに、3HB ユニット供 給系酵素遺伝子を除いた pJScK-C1G プラスミドを *E. coli* LS5218 に導入した組換え株を作 製した。作製した組換え株およびそれらの培養温度を Table 5-14 に示した。1.5 mL の LB 培地で 37°C、15 時間、前培養を行い、その前培養液を接種量 1%(v/v)となるように 100 mL の LB 培地(必要に応じて抗生物質を添加)に植菌し、24 時間、48 時間あるいは 72 時間、130 strokes/min で培養した。*E. coli* JM109 においては、培養開始 5 時間後(OD₆₀₀=0.6 ~0.8)で IPTG を 1 mM となるよう培地に添加し、いずれの組換え株とも、培養開始 8 時 間後に 2%濃度となるようグルコースを添加した。合成された PHA の分析は、ガスクロマ トグラフィーにより行った(Appendix-2 protocols 参照)。

Strains	plasmids	培養温度
Escherichia coli JM109	pJScK-C1GAB and pBSASc-MCL (Pa)	30°C
E. coli LS5218	pJScK-C1GAB	25°C、30°C
	pJScK-C1GAB and pRTcKSc-MCL (Pp)	25°C、30°C
	pJScK-C1GAB and pRTcASc-MCL (Pa)	25°C、30°C、37°C
	pJScK-C1G	25°C
	pJScK-C1G and pRTcKSc-MCL (Pp)	25°C
	pJScK-C1G and pRTcASc-MCL (Pa)	25°C

Table 5-14 作製した大腸菌組換え株および培養温度

5-2-4 ポリエステルの性質と物性評価

組換え株のうち、培養 24 時間後の *E. coli* LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa) の乾燥菌体よりポリエステルを抽出し、その性質を調べるとともに物性評価を行った。ポリエステルを乾燥菌体 6.2 g(平均 PHA 蓄積率 19.7 wt%)から 2 L のクロロホルムを用いて48 時間抽出し、メタノールによる再沈殿を行い、精製した。分子量はゲル浸透クロマトグラフィーにより分析し、精製した共重合ポリエステルの詳細なモノマー組成については、GC/MS および NMR(500 MHz¹H-NMR および 125 MHz¹³C-NMR)解析により調べた⁷。 熱的特性および機械的特性を調べるために、直径 4.5 cm あるいは 9 cm のシャーレを用い て、ソルベントキャストフィルムを作製し、少なくとも2週間以上室温でエイジングさせることでクロロホルムを完全に揮発させ、結晶化させた。熱的特性については、Perkin-Elmer Pyris 1 DSC (PerkinElemer, USA)を用いた DSC により調べた。また、そのフィルム (10 mm × 3 mm × 0.05 mm)を引っ張り試験に用い、機械的特性についても調べた。

5-3 結果および考察

5-3-1 大腸菌における P(3HB-co-3HA)共重合ポリエステルの生合成

PhaGは、(*R*)-3-ヒドロキシアシル ACP:CoA トランスフェラーゼ活性よりも、(*R*)-3-ヒド ロキシアルカン酸を合成する(*R*)-3-ヒドロキシアシル ACP チオエステラーゼ活性が高い ことが報告され、脂肪酸合成経路を介して中鎖長 PHA を合成するためには、(*R*)-3HA-CoA リガーゼが必要であるといえる¹⁾。また、Wang らは、*P. putida* KT2440 の中鎖長アシル CoA リガーゼとして知られる PP0763 遺伝子の翻訳産物が(*R*)-3HA-CoA リガーゼ活性を有する と報告した¹⁾。本研究では、*P. aeruginosa* PAO1 のゲノムを調べたところ、推定中鎖長アシ ル CoA リガーゼ遺伝子 PA3924 が PP0763 とアミノ酸レベルで 82%の相同性を示した。し たがって、PA3924 遺伝子の翻訳産物も、炭素源を糖とした P(3HB-*co*-3HA)生合成において PhaGによって遊離した(*R*)-3HA から(*R*)-3HA-CoA を供給する(*R*)-3HA-CoA リガーゼとして 機能するのではないかと予想した。そこで、PA3924 遺伝子をクローニングし、PHA 重合 酵素遺伝子とともにモノマー供給系に関わる酵素遺伝子を大腸菌に導入した組換え株を作 製し、糖からの P(3HB-*co*-3HA)生合成を試みた。

まず、*R. eutropha* の PHA 生合成遺伝子の native プロモーター、*phaCl*_{Ps}遺伝子、*phaG*_{Ps} 遺伝子および *phbAB*_{Re} 遺伝子を含むプラスミド pJScK-C1GAB を作製した。次に、*P. aeruginosa* DSM 1707 のゲノム DNA を鋳型として PCR を行い、1.8 kb の PA3924 遺伝子を 増幅させ、プラスミド pRTcASc-MCL(Pa)を作製した。同様に、*P. putida* NBRC 100650 の ゲノム DNA を鋳型として PCR を行い、1.7 kb の PP0763 遺伝子を増幅させ、プラスミド pRTcKSc-MCL(Pp)を作製した。さらには、*R. eutropha* の PHA 生合成遺伝子の native プロ モーター、*phaCl*_{Ps}遺伝子および *phaG*_{Ps}遺伝子を含むプラスミド pJScK-C1G を作製した。

そして、pJScK-C1GAB とともに pRTcASc-MCL(Pa)あるいは pRTcKSc-MCL(Pp)をそれ ぞれ導入した大腸菌組換え株を作製し、グルコースを唯一の炭素源として LB 液体培地で 培養した結果を Table 5-15 に示す。さらに、pJScK-C1G とともに pRTcASc-MCL(Pa)あるい はpRTcKSc-MCL(Pp)をそれぞれ導入した大腸菌組換え株を作製し、グルコースを唯一の炭 素源として培養した結果を Table 5-16 に示す。E. coli JM109/pJScK-C1GAB and pRTcASc-MCL(Pa)を 30℃ で 24 時間および 48 時間培養した結果、炭素数 10 の 3HA ユニ ットが 1.7-1.8 mol%導入された P(3HB-co-3HA)が 7.8-8.8 wt%合成された。一方、E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)を30°C で24時間および48時間培養した結果、 炭素数8と炭素数10の3HA ユニットが6.2-7.0 mol%導入されたP(3HB-co-3HA)が5.3-7.2 wt%合成された。JM109の組換え株に比べて、LS5218の組換え株では、共重合ポリエステ ルに取り込まれる中鎖長 3HA ユニットが 7 mol%まで増加し、乾燥菌体重量も増加した。 したがって、宿主として E. coli LS5218 を用いた方が、糖からの P(3HB-co-3HA)合成におい て、より中鎖長 3HA ユニットを取り込みやすいと考えられた。E. coli LS5218 は、fadR が 欠損していることから、脂肪酸を炭素源とした場合も、糖を炭素源とした場合においても P(3HB-co-3HA)共重合ポリエステルの生合成において好ましい宿主であると考えられる^{1,8} ⁹。次に培養温度を 25℃ とした場合、*E. coli* LS5218/pJScK-C1GAB が P(3HB)ホモポリマー のみを合成したのに対して、推定(R)-3HA-CoA リガーゼ遺伝子を導入した E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)あるいは E. coli LS5218/pJScK-C1GAB and pRTcKSc-MCL(Pp)では、炭素数 4、8 および 10 の 3HA ユニットからなる P(3HB-co-3HA) 共重合ポリエステルが合成された。E. coli LS5218/pJScK-C1GAB and pRTcKSc-MCL(Pp)は、 炭素数 10 の 3HA ユニットが 2.3-2.6 mol%導入された P(3HB-co-3HA)が 4 wt%合成された。 一方、E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)は、炭素数8 および10 の3HA ユニットが 5.1-7.1 mol%導入された P(3HB-co-3HA)が 20 wt%合成され、E. coli LS5218/pJScK-C1GAB and pRTc KSc-MCL(Pp)と比べて、中鎖長 3HA 分率も PHA 蓄積率も 高かった。PA3924 遺伝子を導入した組換え株においても、PP0763 遺伝子を導入した組換 え株と同様に中鎖長 3HA ユニットが取り込まれた P(3HB-co-3HA)が合成されたことから、 PA3924 遺伝子の翻訳産物も(R)-3HA-CoA リガーゼ活性を有することが明らかになった。 さらに、phbAB_{Re}遺伝子を除いた組換え株においても、PA3924遺伝子導入株および PP0763 遺伝子導入株で中鎖長3HAユニットだけからなる共重合ポリエステルが合成された(Table 5-16)。したがって、PA3924 遺伝子および PP0763 遺伝子の翻訳産物が脂肪酸合成経路を介

129

した中鎖長 PHA の合成に関与していることがみてとれる。また、*E. coli* LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)を 25°C で培養した際の PHA 生産量は、 1.04-1.10 g/L であり、*E. coli* LS5218/pJScK-C1GAB and pRTcKSc-MCL(Pp)の PHA 生産量

(0.14-0.17 g/L)の約7倍であった。E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)に おいて、30℃で培養した場合の PHA 蓄積率が 5.3-7.2 wt%であったのに対して、25℃で培 養した場合では約 20 wt%であり、約 3-4 倍であった(PHA 生産量は 4.3-6.5 倍)。また、E. coli LS5218/pJScK-C1GAB において、25℃で培養した場合では、P(3HB)ホモポリマーが合 成されたのに対して、30℃で培養した場合にはPHA が合成されなかった。さらに、E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)において、37°Cで培養すると、生育最適温度 であるにも関わらず、PHA は合成されなかった。つまり、培養温度を低くすると PHA の 合成が増加した。この理由として、培養温度を低くし、生育と脂肪酸合成経路における代 謝回転が抑制されることで、PhaG_Bと(R)-3HA-CoA リガーゼによって脂肪酸合成経路から 供給される PHA 重合酵素の基質となる(R)-3HA-CoA のプール量が増加したのではないか と推察した。PhaCl_{Ps}は、短鎖長および中鎖長のモノマーに対して幅広い基質特異性をもつ ため、3HB 分率が高い P(3HB-co-3HA)共重合ポリエステルの合成が可能であるが、PhaC1_{Ps} は、3HB モノマーよりも中鎖長 3HA モノマーとの親和性が高いため、P(3HB)ホモポリマ ーはあまり合成できない。しかしながら、炭素数が 6~12 の(R)-3HA-CoA が存在すること で 3HB ユニットがポリエステル鎖に取り込まれやすくなるのかもしれない。したがって、 培養温度を低くし、十分な量の(R)-3HA-CoA が供給されたことで、P(3HB-co-3HA)共重合 ポリエステルの合成が促進された可能性がある。また、E. coli LS5218/pJScK -C1GAB and pRTcKSc-MCL(Pp)が合成した P(3HB-co-3HA)共重合ポリエステルに比べて、E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)が合成した P(3HB-co-3HA)の中鎖長 3HA 分率 は、5.1-7.4 mol%と高かったことから、PA3924 遺伝子の推定翻訳産物は、PP0763 遺伝子の 翻訳産物とは異なる基質特異性を有しており、中鎖長の 3HA-CoA を効率的に供給できる 可能性がある。共重合ポリエステルのモノマー組成は、そのポリエステルの熱的特性およ び機械的特性に非常に影響を与えることから、実用的な PHA の生産において、 (R)-3HA-CoA リガーゼの基質特異性は、PHA 重合酵素の基質特異性と同様に重要である。

	Table 5-15	PHA production	on in recomb	inant E. col	i strains.				
	Cultivation	Cultivation	Dry cell	PHA	PHA	Ήd	A compos	sition (mol	%)
Strains and plasmids	time (h)	temperature (°C)	weight (g/L)	content (wt%)	concentration (g/L)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)
JM109									
pJScK-C1GAB and pRTcASc-MCL(Pa)	24	30	2.4	7.8	0.19	98.3	0	Trace	1.7
	48	30	1.2	8.8	0.11	98.2	0	Trace	1.8
LS5218									
pJScK-C1GAB	24	25	3.5	4.2	0.15	100	0	0	0
	48	25	4.3	7.6	0.33	100	0	0	0
	72	25	3.9	4.6	0.18	100	0	0	0
	24	30	3.2	0	0	0	0	0	0
	48	30	3.3	0	0	0	0	0	0
pJScK-C1GAB and pRTcKSc-MCL(Pp)	24	25	4.1	3.5	0.14	100	0	0	0
	48	25	4.0	4.2	0.17	<i>T.</i> 79	0	0	2.3
	72	25	3.8	3.8	0.14	97.4	0	0	2.6
	24	30	3.7	9.0	0.02	100	0	0	0
	48	30	3.1	0.5	0.02	100	0	0	0
pJScK-C1GAB and pRTcASc-MCL(Pa)	24	25	5.3	19.7	1.04	94.1	0	1.2	4.7
	48	25	5.4	19.4	1.05	94.9	0	0.2	4.9
	72	25	5.4	20.3	1.10	92.6	0	2.3	5.1
	24	30	3.4	7.2	0.24	93.0	0	1.5	5.5
	48	30	3.2	5.3	0.17	94.8	0	Trace	6.2
	24	37	2.2	0	0	0	0	0	0
Cells were cultivated at 25°C, 30°C or 37°C for 3HB, 3-hydroxybutyrate; 3HHx, 3-hydroxybex	r 24 h, 48 h or 7 (anoate; 3HO, 3	2 h in LB medi-hydroxyoctanc	um. 2% gluc bate; 3HD, 3-	ose was add -hydroxydec	ed to the medium anoate	after 8 h c	of cultiva	tion.	

-	Cultivation	Dry cell	PHA	Η	PHA compos	sition (mol%	
plasmids	time (h)	weight (g/L)	content (wt%)	3HB (C4)	3HHx (C6)	3HO (C8)	3HD (C10)
pJScK-C1G	24	3.7	0	0	0	0	0
$(\mathbf{P}_{\mathrm{Re}}, phaCIG_{\mathrm{Ps}})$	48	4.9	0	0	0	0	0
	72	4.2	0	0	0	0	0
pJScK-C1G and pRTcKSc-MCL (Pp)	24	4.4	Trace	Trace	0	0	0
$(P_{ m Re}, phaCIG_{ m Ps})$ $(P_{ m lac}, PP0763~{ m gene}_{ m Pp})$	48	5.1	0.3	Trace	0	0	100
	72	3.5	1.3	Trace	0	0	100
pJScK-C1G and pRTcASc-MCL (Pa)	24	3.6	0.4	Trace	0	0	100
$(P_{ m Re}, phaCIG_{ m Ps})$ $(P_{ m lac}, PA3924~{ m gene}_{ m Pa})$	48	5.0	0.8	Trace	0	22.8	77.2
	72	4.5	1.1	Trace	0	21.3	78.7
Cells were cultivated at 25°C for 24 h, 48 h or 3HB, 3-hydroxybutyrate; 3HHx, 3-hydroxybu	or 72 h in LB mediu nexanoate; 3HO, 3-h	m. 2% glucose ydroxyoctanoa	was added to ate; 3HD, 3-hy	the medium droxydecano	after 8 h of c ate	ultivation.	

培養 24 時間後の *E. coli* LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)が合成した P(3HB-*co*-3HA)の詳細な性質を調べた。まず、¹H-NMR 解析によってモノマー組成を調べ た結果、3HB 分率が96.4 mol%、炭素数8 および10 の中鎖長 3HA 分率が5.4 mol%であっ た。さらに、トリメチルシリル化(TMS化)したサンプルを GC/MS で分析した結果、こ の共重合ポリエステルには、わずかではあるが炭素数12 および14 の 3HA ユニットもポリ エステル鎖に取り込まれていることが明らかになった(Fig. 5-1)。Figure 5-2 に、¹³C-NMR 解析の結果を示した。P(3HB-*co*-3HA)のピークのうち、169.0-169.3 ppm に 3HB と 3HA ユ ニットからなる 3HB*-3HB および 3HB*-3HA+3HA*-3HB の 2 つのピークが確認できた。 したがって、本研究で合成された P(3HB-*co*-3HA)は、短鎖長 PHA と中鎖長 PHA のブレン ドではなく、3HB と中鎖長の 3HA からなる共重合ポリエステルであることが明らかとな った。

ゲル浸透クロマトグラフィーにより、分子量を分析した結果、本研究で合成された P(3HB-co-5.4% 3HA)共重合ポリエステルの数平均分子量(M,)は233×10³、重量平均分子 量 (M_w) は、459×10³、多分散度 (M_w/M_w) は 2.0 であり、Tappel らが報告した大腸菌によ って合成された P(3HB-co-5% 3HA)、P(3HB-co-7% 3HA)および P(3HB-co-8% 3HA)の M_n(106 ×10³、96×10³および94×10³)より2.2-2.5 倍高かった(Table 5-17)。Tappel らは、高発現 ベクターpTrc99Aを用いて phaG 遺伝子および PP0763 遺伝子を高発現させることによって、 P(3HB-co-3HA)共重合ポリエステルの生産量を高くしている²⁾。しかしながら、それにより PHA 重合酵素の発現量も多くなり、分子量が低くなっている。これまでの報告で、 Pseudomonas sp. 61-3 の組換え株によって合成された P(3HB-co-6% 3HA)共重合ポリエステ ルが、LDPEと似た性質を有する丈夫でしなやかな素材であったのに対して¹⁰、R. eutropha の組換え株によって合成された P(3HB-co-6% 3HA)共重合ポリエステルは、Pseudomonas sp. 61-3の組換え株によって合成された共重合ポリエステルと同じモノマー組成を示すにも関 わらず、分子量が低く、硬くて脆く実用性に乏しい素材であったことが報告されている11。 分子量の違いは、機械的特性に影響をおよぼすといわれている。P(3HB)は一般的に、硬く て脆い素材であるが、超高分子量の P(3HB)においては、機械的性質が改善されると報告さ れている¹²⁾。本研究で合成された P(3HB-co-5.4% 3HA)共重合ポリエステルの数平均分子量 (M.) は233×10³であり、これまでに大腸菌組換え株でグルコースから、このように分子

133

量の比較的高いP(3HB-co-3HA)の合成は報告されていない。

P(3HB-co-5.4% 3HA)共重合ポリエステルの融点(T_m)およびガラス転移点(T_a)はそれ ぞれ 161℃ および 4.6℃ であり、融解エンタルピー(ΔH_m)は 34.5 J/g であった (Table 5-17)。 一般的に、中鎖長 3HA 分率が増加すると、P(3HB)ホモポリマーに比べて融点やガラス転 移点の温度、融解エンタルピーが低くなるといわれている。このポリエステルのソルベン トキャストフィルムを作製し (Fig. 5-3)、機械的特性を調べた結果、3 週間エイジングした フィルムにおける引張強度、ヤング率および破断伸びは、それぞれ 62 MPa、0.23 GPa およ び 195%であった。この破断伸び(195%)は、P(3HB)の破断伸び(5%)や、現在、PHA として汎用されている P(3HB-co-20% 3HA)の破断伸び(50%)よりも高かった¹³⁾。しかし ながら、5ヶ月間エイジングしたフィルムにおける引張強度、ヤング率および破断伸びは、 それぞれ 55 MPa、0.20 GPa および 134%であった。したがって、この共重合ポリエステル は、長期間のエイジングによって機械的性質も変化すると考えられる。柘植らは、 P(3HB-co-3HA)は一度、室温で1ヶ月以上エイジングされるとクロロホルムに溶解しなく なると報告している¹⁴。この機械的性質の変化は、P(3HB-co-3HA)の二次結晶化が進むこ とによると考えられる。PHA の実用化において、共重合ポリエステルの結晶化による物性 の変化を理解することも重要であるため、今後、共重合ポリエステルの結晶化についても 検討する必要がある。

Fig. 5-1 GC/MS as trimethylsilyl derivatives of P(3HB-*co*-5.4% 3HA) synthesized by recombinant *E. coli* LS5218 harboring pJScK-C1GAB and pRTcASc-MCL(Pa).

3HD, 3-hydroxydecanoate; 3HDD, 3-hydroxydodecanoate;

3H5DD, 3-hydroxy-cis-dodecanoate; 3HTD, 3-hydroxytetradecanoate

Fig. 5-2 125 MHz ¹³C-NMR spectrum of P(3HB-co-5.4% 3HA) synthesized by recombinant E. coli LS5218 harboring pJScK-C1GAB and pRTcASc-MCL(Pa). (A) Full ¹³C-NMR spectrum containing all detected peaks. (B) Expanded 168-170 ppm part of full spectrum. (C) Expanded 65-72 ppm part of full spectrum. (D) Expanded 18-42 ppm part of full spectrum. Carbon atoms in the copolymer are numbered and assigned to peaks in the spectrum. 3HB, 3-hydroxybutyrate; 3HO, 3-hydroxyoctanoate; 3HD, 3-hydroxydecanoate; 3HA, mcl-3-hydroxyalkanoate.

Та	ble 5-17 Molecı	ılar weights and thern	nal properties of	solution-cast fi	lms of P(3HB- <i>co</i> -	-3HA).	
	PHA compo	osition (mol%)	Molecul	ar weight	I	hermal proper	ties
sample	3HB (C ₄)	3HA (C ₆ -C ₁₂)	$M_{\rm n} ({\rm x} 10^3)$	$M_{ m w}/M_{ m n}$	T_m (°C)	T_{g} (°C)	ΔH_m (J/g)
P(3HB-co-5.4% 3HA) ^a	94.6	5.4	233	2.0	161	4.6	34.5
P(3HB-co-6% 3HA) ^b	94	9	605	2.3	133, 146	8-	39
P(3HB-co-5 % 3HA)°	95	5	106	2.0 ± 0.3	163.7 ± 0.3	-3.0 ± 0.1	37.1 ± 0.9
P(3HB-co-7 % 3HA)°	93	7	96	1.7 ± 0.2	163.8±0.1	-3.3 ± 0.3	36.1 ± 0.5
P(3HB-co-8 % 3HA)°	92	8	94	1.8 ± 0.2	163.9 ± 0.1	-2.9 ± 0.2	31.7 ± 0.4
P(3HB) ^d	100	0	650	1.8	178	4	91
PHA compositions were de	etermined by ¹ H	-NMR. 3HB, 3-hydro	xybutyrate; 3H	A, medium-chai	n-length 3-hydrox	cyalkanoate u	nits (C ₆ -C ₁₂).
$M_{\rm n}$, number-average molec	ular weight; M _w	, weight-average mol	ecular weight; 7	", melting temp	erature; T_g , glass-	transition ten	nperature;
ΔH_m , enthalpy of fusion.							
	d bosizothood b	1.00 JUCS 1 :100 J		1CAD and aDT		this study	

ЗH
-00
B
(3H
f P(
SO
film
-cast
Ition
solu
of
orties
rope
alp
lerm:
d tł
and
ghts
veig
ar v
cul
Iolé
N N
5-1
le 5
Tab

^aP(3HB-co-3HA) copolymer synthesized by *E. coli* LS5218 harboring pJScK-C1GAB and pRTcASc-MCL(Pa) in this study.

 $^{\rm b}$ Reference 10. $^{\rm c}$ Reference 2. $^{\rm d}$ Reference 15.

Fig. 5-3 本研究で作製した PHA フィルム (P(3HB-co-5.4% 3HB))

5-4 小括

これまで PhaG は、(*R*)-3-ヒドロキシアシル ACP:CoA トランスフェラーゼとして、 *Pseudomonas* 属細菌における脂肪酸合成経路を介した中鎖長 PHA の合成に重要であると報 告されてきた¹⁰。最近、PhaG は、(*R*)-3-ヒドロキシアシル ACP:CoA トランスフェラーゼ 活性よりも、(*R*)-3-ヒドロキシアルカン酸を生成する(*R*)-3-ヒドロキシアシル ACP チオエ ステラーゼ活性の方が高いことが報告された¹⁾。したがって、脂肪酸合成経路を介して中 鎖長 PHA を合成するためには、(*R*)-3HA-CoA リガーゼが必要であるといえる¹⁾。*P. putida* KT2440 の PP0763 遺伝子の翻訳産物が(*R*)-3HA-CoA リガーゼ活性を有するとの報告を受け ¹⁾、本研究では、PP0763 遺伝子の翻訳産物とアミノ酸レベルで 82%の相同性を示した *P. aeruginosa* PAO1 の PA3924 遺伝子をクローニングした。そして、PHA 重合酵素遺伝子 (*phaCl*_{Ps}) およびモノマー供給系に関わる酵素遺伝子を大腸菌 (*E. coli* JM109 および*E. coli* LS5218) に導入した組換え株を作製し、グルコースを唯一の炭素源として、P(3HB-*co*-3HA) 共重合ポリエステルの合成を試みた。

まず、30°C で培養した場合、*E. coli* JM109/pJScK-C1GAB and pRTcASc-MCL(Pa)では、炭 素数 10 の 3HA ユニットが 1.7-1.8 mol%導入された P(3HB-*co*-3HA)が 7.8-8.8 wt%合成され た。一方、*E. coli* LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)では、炭素数 8 と炭素数 10 の 3HA ユニットが 6.2-7.0 mol%導入された P(3HB-*co*-3HA)が 5.3-7.2 wt%合成された。糖か

らの P(3HB-co-3HA)生合成においては、宿主として E. coli JM109 よりも、E. coli LS5218 を 用いた方が、生育も良好で、より中鎖長 3HA ユニットも取り込みやすいと考えられた。次 に培養温度を25℃とした場合、E. coli LS5218/pJScK-C1GAB が P(3HB)ホモポリマーのみ を合成したのに対して、推定(R)-3HA-CoA リガーゼ遺伝子を導入した大腸菌では中鎖長 3HA ユニットが導入された P(3HB-co-3HA)共重合ポリエステルが合成された。E. coli LS5218/pJScK-C1GAB and pRTcKSc-MCL(Pp)は、炭素数 10 の 3HA ユニットが 2.3-2.6 mol% 導入された P(3HB-co-3HA)が 4 wt%合成され、E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)は炭素数 8 および 10 の 3HA ユニットが 5.1-7.1 mol%導入された P(3HB-co-3HA)が 20 wt%合成された。したがって、PA3924 遺伝子の翻訳産物も PP0763 遺 伝子の翻訳産物と同様に(R)-3HA-CoAリガーゼ活性を有することが明らかとなった。また、 E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)を 25℃ で培養した際の PHA 生産量 (1.04-1.10 g/L) は、E. coli LS5218/pJScK-C1GAB and pRTcKSc-MCL(Pp)の PHA 生産量 (0.14-0.17 g/L)の約7倍であった。E. coli LS5218/pJScK-C1GAB and pRTcASc-MCL(Pa)に おいて、25℃で培養した場合、30℃で培養した場合に比べて、PHA 蓄積率は約 3-4 倍で あった。さらに、37℃で培養すると、生育最適温度であるにも関わらず、PHA は合成さ れなかった。また、E. coli LS5218/pJScK-C1GAB においては、30℃ で培養した場合には PHA が合成されなかったのに対して、25℃ で培養した場合では、P(3HB)ホモポリマーが合成さ れた。したがって、培養温度を低くすると PHA の合成が増加した。これは、培養温度を 低くし、菌体増殖と脂肪酸合成経路における代謝回転が抑制されることで、PHA 重合酵素 の基質となる(R)-3HA-CoAの菌体内プール量が増加したことが考えられる。

¹H-NMR および ¹³C-NMR 解析によって、*E. coli* LS5218/pJScK-C1GAB and pRTcASc-MCL (Pa)が合成したP(3HB-*co*-3HA)の詳細なモノマー組成を調べた結果、3HB 分率が96.4 mol%、 炭素数 8 および 10 の中鎖長 3HA 分率が 5.4 mol%であった。また、本研究で合成された P(3HB-*co*-5.4% 3HA)は、短鎖長および中鎖長 PHA のブレンドではなく、3HB と中鎖長の 3HA からなる共重合ポリエステルであることが明らかとなった。さらに、TMS 化後の GC/MS より、この共重合ポリエステルには、わずかではあるが炭素数 12 および 14 の 3HA ユニットもポリエステル鎖に取り込まれていることが明らかになった。

また、P(3HB-*co*-5.4% 3HA)共重合ポリエステルの数平均分子量(M_n)は233×10³、多分 散度(M_w/M_n)は2.0であり、Tappelらが報告した大腸菌によって合成された P(3HB-*co*-3HA) の M_n より約2倍高かった。分子量の違いは、機械的特性に影響をおよぼすといわれてお り、本研究で合成された P(3HB-co-5.4% 3HA)共重合ポリエステルは、比較的分子量が高い。 これまでに大腸菌を宿主としてグルコースから、このような分子量の高い P(3HB-co-3HA) の合成は報告されていない。さらに、ソルベントキャストフィルムを作製し、機械的特性 を調べた結果、3 週間エイジングしたフィルムにおける引張強度、ヤング率および破断伸 びは、それぞれ 62 MPa、0.23 GPa および 195%であった。これは、P(3HB)の破断伸び (5%) や、現在、PHA として汎用されている P(3HB-co-20% 3HA)の破断伸び (50%) よりも高く ¹³、実用的な PHA として期待される。しかしながら、長期間のエイジングによって機械的 性質は変化した。この機械的性質の変化は、P(3HB-co-3HA)の結晶化が進むことによって 起こると考えられるが、PHA の実用化において、こういった共重合ポリエステルの結晶化 による物性の変化についても理解することが生分解性プラスチックの実用化と普及を考え る上で重要になると思われる。

- Wang, Q., Tappel, R.C., Zhu, C. and Nomura, C.T. (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoate by recombinant *Escherichia coli* via inexpensive non-fatty acid feedstocks. *Appl. Environ. Microbiol.*, 78, 519-527
- Tappel, R.C., Pan, W., Bergey, N.S., Wang, Q., Patterson, I.L., Ozumba, O.A., Matsumoto, K., Taguchi, S. and Nomura, C.T. (2014) Engineering *Escherichia coli* for improved production of short-chain-length-*co*-medium-chain-length poly[(*R*)-3-hydroxyalkanoate] (SCL-*co*-MCL PHA) copolymers from renewable nonfatty acid feedstocks. *ACS Sustainable Chem. Eng.*, 2, 1879-1887
- Taguchi, S. and Doi, Y. (2004) Evolution of polyhydroxyalkanoate (PHA) production system by "enzyme evolution": successful case studies of directed evolution. *Macromol. Biosci.*, 4, 146-156
- 4. Spratt, S.K., Ginsburgh, C.L. and Nunn, W.D. (1981) Isolation and genetic characterization of *Escherichia coli* mutants defective in propionate metabolism. *J. Bacteriol.*, **146**, 1166-1169
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop II, R.M. and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene*, **166**, 175-176
- Davidson, J., Heusterspreute, M., Chevalier, N., Ha-Thi, V. and Brunel, F. (1987) Vectors with restriction site banks V. pJRD215, wide-host-range cosmid vector with multiple cloning sites. *Gene*, 51, 275-280
- Tsuge, T., Yano, K., Imazu, S., Numata, K., Kikkawa, Y., Abe, H., Taguchi, S. and Doi, Y. (2005) Biosynthesis of polyhydroxyalkanoate (PHA) copolymer from fructose using wild-type and laboratory-evolved PHA synthases. *Macromol. Biosci.*, 5, 112-117
- Sato, S., Nomura, C.T., Abe, H., Doi, Y. and Tsuge, T. (2007) Poly[(*R*)-3-hydroxybutyrate] formation in *Escherichia coli* from glucose through an enoyl-CoA hydratase-mediated pathway. *J. Biosci. Bioeng.*, **103**, 38-44

- Nomura, C.T., Tanaka, T., Eguen, T.E., Appah, A.S., Matsumoto, K., Taguchi, S., Ortiz, C. L. and Doi, Y. (2008) FabG mediates polyhydroxyalkanoate production from both related and nonrelated carbon sources in recombinant *Escherichia coli* LS5218. *Biotechnol. Prog.*, 24, 342-351
- Matsusaki, H., Abe, H. and Doi, Y. (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-*co*-3-hydroxyalkanoates) by recombinant strains of *Pseudomonas* sp. 61-3. *Biomacromolecules*, 1, 17-22
- Tsuge, T., Yamamoto, T., Yano, K., Abe, H. Doi, Y. and Taguchi, S. (2009) Evaluating the ability of polyhydroxyalkanoate synthase mutans to produce P(3HB-*co*-3HA) from soybean oil. *Macromol. Biosci.*, 9, 71-78
- Kusaka, S., Abe, H., Lee, S.Y. and Doi, Y. (1997) Molecular mass of poly[(*R*)-3-hydroxybutyric acid] produced in a recombinant *Escherichia coli*. *Appl. Microbiol*. *Biotechnol.*, 47, 140-143
- Sudesh, K., Abe, H. and Doi, Y. (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. *Prog. Polym. Sci.*, 25, 1503-1555
- Tsuge, T., Hamada, Y., Watanabe, Y., Tomizawa, S. Yamamoto, T. and Abe, H. (2010) Characterization of biosynthesized P(3HB-co-3HA)s swellable in organic solvents. *Polym. Degrad. Stab.*, 95, 1345-1348
- Abe, H., Doi, Y. and Kumagai, Y. (1994) Synthesis and characterization of poly[(*R*, *S*)-3-hydroxybutyrate-β-6-hydroxyhexanoate] as a compatibilizer for a biodegradable blend of poly[(*R*)-3-hydroxybutyrate] and poly(6-hydroxyhexanoate). *Macromolecules*, 27, 6012-6017
- Rehm, B.H.A., Kruger, N. and Steinbüchel, A. (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The *phaG* gene from *Pseudomonas putida* KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J. Biol. *Chem.*, 273, 24044-24051

第六章

総括

プラスチックに代表される化石燃料由来の合成高分子材料は、軽くて強く、耐久性にす ぐれるなどの利点をもっていることから、私たちの生活に欠かせない素材であるといえる。 しかしながら、その廃棄物の多くは、自然環境中で分解されず、様々な環境問題を引き起 こしている。一方、多くの微生物が、エネルギー貯蔵物質として菌体内に合成・蓄積する ポリヒドロキシアルカン酸(PHA) は優れた生分解性を有し、環境調和型プラスチックと して期待されている。PHA の実用化のためには、PHA の物性を改善し、低コストで生産 するシステムを構築することが重要である。したがって、PHA 生合成関連遺伝子の詳細な 解析が必須であり、それにより得られた知見を基に、その分子構造や組成を自由にコント ロールする必要がある。また、安価な炭素源を用いることが循環型社会構築のためにも好 ましい。そこで、本研究では、ポリヒドロキシアルカン酸生合成遺伝子の解析と優れた共 重合ポリエステル生産菌の分子育種を目的とした。

Pseudomonas sp. 61-3 は、炭素数4の3-ヒドロキシブタン酸(3HB)からなる P(3HB)ホ モポリマーと、炭素数4~12の3-ヒドロキシアルカン酸(3HA)からなる P(3HB-co-3HA) 共重合ポリエステルの2 種類の PHA を合成・蓄積する^{1,2)}。PHA 生合成に関する遺伝子に ついて、P(3HB-co-3HA)の生合成に関わる pha locus と P(3HB)の生合成に関わる phb locus の一部がこれまでに同定されている。また、Pseudomonas sp. 61-3 の P(3HB)と P(3HB-co-3HA)の PHA 顆粒にはそれぞれ特異的に結合するタンパク質 Granule-associated protein (GAP) が存在する。PHA 顆粒にはポリエステル重合酵素以外に、GA18、GA36、 GA24、GA48 (porin) が結合することが明らかとなっており、GA18 および GA36 の遺伝 子は、phaI および phaF とそれぞれ同定されているが³、GA24 遺伝子は同定されていない。 さらに、これらの GAP のポリエステルへの局在性が何に起因しているのかについては不 明である。

そこで、第二章「*Pseudomonas* sp. 61-3 のポリヒドロキシアルカン酸顆粒結合タンパク質 遺伝子のクローニングと顆粒結合タンパク質の局在性」では、GA24 遺伝子のクローニン グを行い、*phbP* と命名した。さらに、*phbP* 遺伝子をプローブとして、本菌のゲノム DNA ライブラリーのコロニーハイブリダイゼーションを行い、*phbP*_{Ps} 遺伝子の周辺領域をクロ ーニングした。その結果、*phbP* 遺伝子の下流に *phbF* 遺伝子を発見した。*phbP* 遺伝子の推 定翻訳産物は、192 アミノ酸残基からなる推定分子量 20.4 kDa のタンパク質 (GA24)、*phbF* 遺伝子の推定翻訳産物は、178 アミノ酸残基からなる推定分子量 19.6 kDa のタンパク質で あり、相同性検索の結果から、PhbP は P(3HB)や P(3HB-co-3HA)顆粒の安定性に関わる

143

phasin タンパク質、PhbF は phbP 遺伝子の転写を調節する調節タンパク質であると予想さ れた。また、Pseudomonas sp. 61-3 の phb locus 上に phbR 遺伝子と phbP 遺伝子の間が約 3 kb 離れていることが明らかとなり、この間に機能不明 ORF を新たに見いだした。次に、GAP の局在性とポリエステルのモノマー組成比について、さまざまな共重合 PHA を合成する 組換え株を作製し、検討した結果、これらの GAP は、PHB あるいは PHA 重合酵素との相 互作用により局在性が決定するのではなく、ポリエステル鎖を直接認識し、モノマー組成 比に応じて結合していることが予想された。これまでに PHA のモノマー組成の変化によ って、PHA 顆粒の膜構造が変化するという報告があり⁴、P(3HB-co-3HA)のモノマー組成 比の変化により、PHA 顆粒の膜構造が変化し、それに伴い、PhbP、PhaI および PhaF タン パク質が特異的に結合している可能性も考えられた。

第三章「Pseudomonas sp. 61-3 のポリヒドロキシアルカン酸生合成遺伝子クラスター上に存在する機能不明遺伝子」では、第二章で新たに発見した、Pseudomonas sp. 61-3 の phb locus 上のphbR遺伝子とphbP遺伝子の間に存在する機能不明ORFの機能解析を行った。RT-PCR により、この ORF の転写について調べたところ、LB 培地および MS 培地のいずれにおいても転写が確認されたため、この ORF は遺伝子として何らかの機能を有しており、構成的に発現していると考えられた。さらには、ORF の推定翻訳産物は、α/βヒドロラーゼドメインを有していることから、PHA 重合酵素あるいは菌体内 PHA 分解酵素であると予想した。そこで、Pseudomonas sp. 61-3 の ORF 破壊株および ORF 導入組換え株を作製するとともに、大腸菌の系を用いて、ORF の PHA 重合酵素活性および菌体内 PHA 分解酵素活性について検討したが、その機能を解明するまでには至らなかった。

第四章「組換え Ralstonia eutropha による PHA 生産」では、本研究や他の先行研究で得られた PHA 生合成遺伝子に関する知見を用いた応用例として、化学合成独立栄養細菌である R. eutropha を宿主として、糖や二酸化炭素から実用的な共重合 PHA の合成を試みた。 lac プロモーターあるいは、R. eutropha の PHA 生合成遺伝子(phbCAB オペロン)の native プロモーターの下流に、Pseudomonas sp. 61-3 の PHA 重合酵素遺伝子 phaC1、3-ヒドロキ シアシル ACP:CoA トランスフェラーゼ遺伝子 phaG および R. eutropha のβ-ケトチオラーゼ 遺伝子 phbA、アセトアセチル CoA リダクターゼ遺伝子 phbB を導入したプラスミドを作製 し、PHA 合成能欠損株である R. eutropha PHB4 および R. eutropha C-TnGmHX8 に導入した。 そして、これらの組換え株を従属栄養条件下あるいは独立栄養条件下にて培養した。その 結果、R. eutropha C-TnGmHX8/pRKmKSc-C1GAB で、炭素数 6~12 の 3HA ユニットが 5
mol%程度導入された P(3HB-co-3HA)共重合ポリエステルが約25 wt%合成された。そこで、 この乾燥菌体からポリエステルを抽出し、GC/MS および NMR 解析を行ったところ、3HB 分率が 97.6 mol%、3HA 分率が 2.4 mol%で、中鎖長 3HA ユニットの取り込みはわずかで あり、炭素数 10 以上の 3HA ユニットの取り込みはみられなかった。また、物性に関して は、破壊伸びが P(3HB)が 5%であるのに対して、このポリエステルは 23±3%であり、P(3HB) よりは、若干ではあるが、伸縮性のある素材であると考えられた。しかしながら、より物 性の優れた PHA を合成するためには、さらに 3HA ユニットを高める必要がある。また、 二酸化炭素を炭素源として培養した場合、*R. eutropha* C-TnGmHX8/pRKmKSc-C1G で、約 60%の P(3HB)ホモポリマーが合成された。

一方、PhaGは、トランスフェラーゼ活性よりもチオエステラーゼ活性が高いことが最近 報告された ⁹。したがって、中鎖長 3HA ユニットを供給するためには、PhaC1 および PhaG に加えて、(R)-3-ヒドロキシアシル CoA((R)-3HA-CoA) リガーゼが必要である。また、大 腸菌を宿主として糖から P(3HB-co-3HA)共重合ポリエステルを合成した報告例はほとんど ない。そこで、第五章「大腸菌を宿主とした糖からの生分解性共重合ポリエステルの生合 成~(R)-3-ヒドロキシアシル CoA リガーゼ遺伝子のクローニング~」では、P. aeruginosa PAOより推定中鎖長アシル CoA リガーゼ遺伝子 (PA3924) をクローニングし、PHA 重合 酵素遺伝子とともにモノマー供給系に関わる酵素遺伝子を導入した大腸菌の組換え株を作 製し、糖を炭素源として培養した。その結果、PA3924 遺伝子導入株で中鎖長 3HA ユニッ トが 5.4 mol%導入された P(3HB-co-3HA)が合成され、PA3924 遺伝子の翻訳産物が (R)-3HA-CoA リガーゼ活性を有することを初めて明らかにした。このポリエステルの数平 均分子量 (M_n) は 233 × 10³、多分散度 (M_n/M_n) は 2.0 であり、このように比較的分子量 の高い共重合ポリエステルを大腸菌を宿主として糖から合成した例はなく、本研究が初め ての報告である。このポリエステルのソルベントキャストフィルムを作製し、機械的特性 を調べた結果、3 週間エイジングしたフィルムにおける破断伸びは 195%であり、P(3HB) に比べて物性が改善された。脂肪酸合成経路はすべての生物において共通であるので、今 後、本研究で確立した大腸菌における糖からの共重合ポリエステル生合成の系を応用し、 R. eutropha を宿主として二酸化炭素からの共重合ポリエステルの生合成も可能であると考 えられる。これに成功できれば、高度環境調和型 PHA 生産システムの構築にさらに寄与 できるといえる。また、目的とするモノマー組成の共重合 PHA を効率よく合成するため には、PHA 重合酵素やモノマー供給系に関わる酵素だけでなく、PHA 顆粒の安定化に寄

145

与する phasin を共発現させる必要があるかもしれない。

以上、本研究では、安価な糖や二酸化炭素から実用的な生分解性共重合ポリエステルを 合成するために、まず、PHA 生合成遺伝子の解析を行った。各酵素の特性・特徴について 明らかにし、代謝制御を行うことは、優れた物性の PHA の合成と効率的生産につながる といえる。さらに、本研究では、これらの知見に基づいて微生物の分子育種を行った。遺 伝子組換え菌を作製し、物性の優れた共重合ポリエステルの合成を効率的に行うことで、 より環境にやさしい PHA 生産、物性の改善と低コスト化が可能となるといえる。

- Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T. and Doi, Y. (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-*co*-3-hydroxyalkanoate) biosynthesis genes in *Pseudomonas* sp. strain 61-3. *J. Bacteriol.*, **180**, 6459-6467
- Fukui, T., Kato, M., Matsusaki, H., Iwata, T. and Doi, Y. (1998) Morphological and ¹³C-nuclear magnetic resonance studies for polyhydroxyalkanoate biosynthesis in *Pseudomonas* sp. 61-3. *FEMS Microbiol. Lett.*, 164, 219-225
- Matsumoto, K., Matsusaki, H., Taguchi, K., Seki, M. and Doi, Y. (2002) Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in *Pseudomonas* sp. 61-3. *Biomacromolecules*, 3, 787-792
- Mayer, F., Madkour, M.H., Pieper-Fürst, U., Wieczorek, R. and Steinbüchel, A. (1996) Electron microscopic observations on the macromolecular organization of the boundary layer of bacterial PHA inclusion bodies. *J. Gen. Appl. Microbiol.*, 42, 445-455
- Wang, Q., Tappel, R.C., Zhu, C. and Nomura, C.T. (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoate by recombinant *Escherichia coli* via inexpensive non-fatty acid feedstocks. *Appl. Environ. Microbiol.*, **78**, 519-527

Appendix

Appendix-1 使用培地

【抗生物質】

- ※ 下記を開放系で調製する。
 - アンピシリン(Amp)(100 mg/mL)
 遠沈管にアンピシリンナトリウム(Wako) 500 mg を量り取り、滅菌水 10 mL を入れ、ボルテックスで溶解させる。
 - カナマイシン(Km)(50 mg/mL)
 遠沈管にカナマイシン硫酸塩(Wako)500 mg を量り取り、滅菌水10 mL を入れ、
 ボルテックスで溶解させる。
 - テトラサイクリン(Tc)(12.5 mg/L)
 遠沈管にテトラサイクリン塩酸塩(Wako)125 mg を量り取り、50%エタノール(滅 菌水:100%エタノール=1:1)10 mL を入れ、ボルテックスで溶解させる。
 - ゲンタマイシン(Gm)(10 mg/mL)
 遠沈管にゲンタマイシン硫酸塩 100 mg を量り取り、滅菌水 10 mL を入れ、ボルテ ックスで溶解させる。
- ※ これらをクリーンベンチにてフィルター滅菌(0.2µm)し、滅菌済み遠沈管(15 ml 容)
 で-25℃で保存する。また、これらは、マイクロチューブに100 mL ずつ分注しておく。

【誘導物質】

・IPTG (イソプロピル-β-D-チオガラクトピラノシド)(0.1 M)
 フィルター滅菌(0.2 μm)を行い、滅菌済み遠沈管(15 mL 容)で-25℃で保存する。β-ガラクトシダーゼ遺伝子発現の誘導物質として使用する。

【発色性基質】

・X-gal (5-ブロモ-4-クロロ-3-インドリル-b-D-ガラクトピラノシド) β-ガラクトシダーゼに対する発色性基質として使用する。 【培地組成】

·LB(lysogeny broth)液体培地

Table A-1 の成分に蒸留水を加えて1Lとし、pH 7.0 に調整した後、121℃、20分 オートクレーブ殺菌を行う。プラスミド維持のため、必要に応じて抗生物質のストック溶 液を培地の1/1000 量添加する。

Table A-1 LB medium (1 L)

Bacto Tryptone (Difco)	10 g
Yeast extract (Difco)	5 g
NaCl	5 g

·LB 寒天平板培地

Table A-1 のLB 培地を pH 7.0 に調整した後、1.5%濃度になるように Agar を加え、121℃、 20 min オートクレーブ滅菌を行う。55~65℃まで放冷後に、必要に応じて抗生物質のスト ック溶液を培地の 1/1000 量添加し、混合して滅菌シャーレに 15~20 mL ずつ注ぎ、寒天平 板培地を作製する。

·LB (AXI) 寒天平板培地

Table A-1 の LB 培地に、1.5%濃度になるように Agar を加え、121°C、20 min オートクレ ーブ滅菌を行う。55~65°Cまで放冷後、Table A-2 に示したように X-gal(5-ブロモ-4-クロ ロ-3-インドリル-β-D-ガラクトピラノシド)、およびろ過滅菌(0.2 μ m)した IPTG(イソプ ロピル-β-D-チオガラクトピラノシド)とアンピシリン(Amp)を添加、混合して滅菌シャ ーレに 15~20 mL ずつ注ぎ、寒天平板培地を作製する。

Table A-2

	終濃度
アンピシリン (Amp)	100 µg/mL
IPTG	0.1 mM
X-gal	40μ g/mL

※ X-gal は疎水性のため、添加時に X-gal を最終濃度が 40 mg/mL となるようマイクロチュ ーブに取り、これが 2%となるようジメチルホルムアミドに溶解させたものを添加。

•NB (Nutrient broth) 培地

Table A-3 の成分に蒸留水を加えて1Lとし、pH 7.0 に調整した後、試験管に1.7 mL (1.5 mL 試験管培地の場合) ずつ分注し、シリコ栓をして121℃で20分間オートクレーブ殺菌を行う。プラスミド維持のため、必要に応じて抗生物質のストック溶液を培地の1/1000 量添加する。

Table A-3 NB medium (1 L)

		終濃度
Meat extract(極東製薬工業)	10 g	1%
Bacto peptone (Difco)	10 g	1%
NaCl	5 g	0.5%

•MS (Mineral salt) 培地

<炭素源が糖の場合>

Table A-4 の成分のうち、1000 × MgSO₄ soln.、Trace element soln.、炭素源(20%濃度に調 製し、フィルター滅菌したもの)を除いた 100 mL 分の成分を、500 ml 容坂口フラスコ 1 本あたり 90 mL の蒸留水に溶解させ、pH 7.0 に調整後、121℃ で 20 分間オートクレーブ殺 菌を行う。培養直前に 1000 × MgSO₄ soln.、Trace element soln.をそれぞれ 100 µL、炭素源を 10 mL (終濃度 2%) 添加する。また、必要に応じて抗生物質のストック溶液を培地の 1/1000 量添加する。

<炭素源が脂肪酸の場合>

炭素源が糖の場合と同様にして坂口フラスコ1本あたり90mLの蒸留水に溶解させ、pH 7.0 に調整する。脂肪酸の場合は、オートクレーブする前に必要量の脂肪酸(それぞれ終濃 度0.5%)を添加し、さらに蒸留水を10mL加える。脂肪酸は完全には溶解しないため、粉 末が残っている状態で良い。その後は炭素源が糖の場合と同様にオートクレーブする。

151

Table A-4

Mineral salt medium (1 L)		^(b) Trace element soln. (0.1 N HCl)	
KH ₂ PO ₄	1.5 g	$CoCl_2 \cdot 6H_2O$	0.218 g/L
$NaHPO_4 \cdot 12H_2O$	9.0 g	FeCl ₃	9.7 g/L
NH ₄ Cl	0.5 g	CaCl ₂	7.8 g/L
$1000 \times MgSO_4 \text{ soln.}^{(a)}$	1 mL	$NiCl_2 \cdot 6H_2O$	0.118 g/L
Trace element soln. ^(b)	1 mL	$CrCl_3 \cdot 6H_2O$	0.105 g/L
Carbon source	хg	$CuSO_4 \cdot 5H_2O$	0.156 g/L

^(a) $1000 \times MgSO_4$ soln. • • • $MgSO_4 \cdot 7H_2O = 200 \text{ g/L}$

・シモンズ・クエン酸培地

下記成分(Table A-5)に蒸留水を加えて 500 mL とし、pH を 6.9 に調整する。褐変を防 ぐため、Agar は別に量り取り、500 mL の蒸留水を加えて調製する。それぞれ調製後、121℃、 20 分オートクレーブ殺菌を行う。オートクレーブ後、別殺菌した Agar、プラスミド維持の ため、必要に応じて抗生物質のストック溶液を培地の 1/1000 量添加、混合して滅菌シャー レに 15~20 mL 注ぎ、寒天平板培地を作製する。

Table A-5

Simmond's citric acid Medium (1 L)	
クエン酸三ナトリウム二水和物	2.3 g
NaCl	5.0 g
$MgSO_4 \cdot 7H_2O$	0.4 g
NH ₄ H ₂ PO ₄	1.0 g
K ₂ HPO ₄	1.0 g
Agar	15.0 g

・SOB 培地

Bacto Tryptone(Difco)...終濃度 2.0%、Yeast extract(Difco)...0.5%、NaCl...10 mM、2 M KCl...2.5 mM となるように蒸留水に溶解し、pH 7.0 に調整後 121℃、20 分間オートクレ ーブを行う。これに別殺菌した 1 / 100 量の 2 M Mg²⁺溶液(1 M MgSO₄ • 7H₂O + 1 M MgCl₂ • 6H₂O)を加える。

・SOC 培地

SOB 培地(2 M Mg²⁺が入っていないもの)(1 サンプルにつき 200 μ L 使用)に、オート クレーブした 2 M Mg²⁺溶液と 2 M グルコース溶液を、それぞれ使用する直前に 1/100 量(2 μ L)ずつ加える。

Appendix-2 protocols

【ゲノム DNA の少量調製】

・ 試薬

1 1 $(p110.0)$

10 mM Tris-HCl

1 mM EDTA(エチレンジアミン四酢酸二ナトリウム)

* pH 調整後, オートクレーブする。

- 2) 20 mg/mL proteinase K
- 3) CTAB-NaCl 溶液

10%CTAB(セチルトリメチルアンモニウムブロマイド)

- 0.7 M NaCl
- 3) 10%SDS

ドデシル硫酸ナトリウムを 10% (w/v) になるように超純水に溶解し、オートクレー ブ殺菌を行う(フィルター滅菌をしてもよい)。

- 4) CTAB-NaCl
- 5) 5 M NaCl
- 6) クロロホルム/イソアミルアルコール (24:1)
- 7) TE 飽和フェノール
- 8) イソプロパノール
- 9) 70%冷エタノール

操作

1) Pseudomonas sp. 61-3の単コロニーを 1.5 mL の LB 培地に植菌し、28°C で 12~18 時間

振とう培養(120 strokes/min)を行う。

- 2) 培養液をマイクロチューブに移し、6,000 rpm、3 分間遠心する。
- 3) 上清を捨て、菌体ペレットを 567 µl の TE に懸濁する。
- Chic 30 µL の 10%SDS および 3 µL の 20 mg/mL proteinase K 溶液を加え、チューブ を上下逆にしてよく混和する。
- 5) 37℃で1時間インキュベーションを行う。
- 6) 5 M NaCl を 100 µL 加えて穏やかによく混和する。
- 7) CTAB-NaClを 80 µL 加えて穏やかによく混和する。
- 8) 65℃で10分間インキュベーションを行う。
- クロロホルム/イソアミルアルコール(24:1)を700 µL 加え約10分間チューブを上 下逆にしてよく混和する。
- 10) 4°C、12,000 rpm、5 分間遠心する。
- 11) 粘性のある水層(上層)を新たなマイクロチューブに移し、フェノール/クロロホルム /イソアミルアルコール(25:24:1)を等量(~650 µl)加え、チューブを上下逆にし て穏やかによく混和する(フェノール処理)。
- 12) 4°C、12,000 rpm、5 分間遠心する。
- 13) 粘性のある水層(上層)を新たなマイクロチューブに移す(フェノール処理)。フェ ノール処理を2、3回繰り返す。
- 14) 得られた水層の 0.6 倍容のイソプロパノールを加え、チューブを穏やかによく振り DNA の沈殿を形成させる。
- 15) 4°C、12,000 rpm、10 分間遠心する。
- 16) 沈殿に 70%冷エタノール (-20℃) 1 mL を加えてリンスする。
- 17) 4°C、12,000rpm、5 分間遠心する。
- 18) 上清をよく取り除き、真空遠心乾燥機で約15分間沈殿物を乾燥させ、沈殿物をTE(pH
 8.0) 100 µL に溶解する(約10~20 µg の DNA が得られる)。
- 19) 100 µL から一部分を取り、アガロースゲル電気泳動を行い、ゲノム DNA を確認する。

【RNA の除去】

- ・ 試薬
- 1) TE

2) 10 mg/mL RNaseA (DNase free)

		最終濃度
Ribonuclease A bovine pancreas (RNaseA)	50 mg	10 mg/mL
1 M Tris-HCl (pH 7.5)	0.05 mL	10 m M
5 M NaCl (pH 7.5)	0.015 mL	15 mM
滅菌水	up to 5 mL	

※ まず、1 M Tris-HCl (pH 7.5)および5 M NaCl (pH 7.5)でバッファーを作製し、それに RNaseA 粉末を溶解する。マイクロチューブに分注し、100℃のヒートブロックで15分処 理後、そのまま室温になるまでゆっくりと冷まして作製する。

up to 5 mL

- 3) クロロホルム/イソアミルアルコール (24:1)
- 4) TE 飽和フェノール
- 5) 3 M 酢酸ナトリウム (pH 5.2)
- 6) 100%冷エタノール
- 操作 •
- 上記で得られた 100 µL の DNA 溶液に TE (pH 8.0) 100 µL をさらに加える。 1)
- 10 mg/mL の RNase (DNase free) を 2 µL 添加後、37℃ で 10~30 分間インキュベーシ 2) ョンを行う。
- 3) フェノール/クロロホルム/イソアミルアルコール(25:24:1)を等量(200 µL)加え、 チューブを上下逆にして穏やかによく混和する。
- 4) 4°C、12,000 rpm、5 分間遠心する。
- エタノール沈殿後、遠心分離して沈殿を得る。 5)
- 1mLの70% 冷エタノールで沈殿を2回リンスする。 6)
- 7) 4°C, 12,000 rpm, 5 分間遠心する。
- 上清をよく取り除き、真空遠心乾燥機で約15分間沈殿物を乾燥させ、100 µLのTEに 8) 溶解する。
- 9) 得られたゲノム DNA は分光光度計およびアガロースゲル電気泳動により濃度および 純度を測定、確認する。

【アガロース電気泳動】

- ・試薬
 - 1) 電気泳動用低沸点アガロースLO3 (TaKaRa)
 - 2) $50 \times TAE$ buffer

2 M Tris
2 M 酢酸
50 mM EDTA (pH 8.0)
超純水

1×TAE buffer はこれを希釈して用いる。

- EtBr ストック溶液
 10 mg/mL の溶液(市販)を1×TAE buffer で1,000~2,000 倍程度に希釈し、遮光で 室温保存。EtBr は発ガン性物質のため、必ず手袋をして取り扱うこと。
- 4) 分子量マーカー Loading Quick *\\Hin*dIII digest (TOYOBO)
- 5) 色素 Loading Dye (TOYOBO)
- ・ゲルの作製

アガロースゲル 1.2gを三角フラスコに量り取り、1×TAE buffer 150 mL を加え、電 子レンジで加熱融解させる(ゲル濃度 0.8%)。アガロース溶液を注ぎ、コームをセット して放冷し固化させる。ゲル使用時に、1×TAE buffer を加える。

- 操作
 - 1) サンプル溶液 5~8 µL に色素 2 µL を混合し、ウェルにアプライする。
 - 2) 10 µL の分子量マーカーとともに 100 V、約 30 min 泳動する。
 - 3) 電気泳動装置からゲルをそっとはずし、EtBr に 15 min 振とう染色後、蒸留水で 15 min 穏やかに振とう洗浄する。
 - 4) UV (短波長 254 nm) でバンドを確認し、写真を撮る。

【ゲルからの DNA 抽出】

GENECLEAN KIT (BIO 101) 使用あるいは QIAEX II Gel Extraction Kit (QIAGEN) を用いた。

【ライゲーション (pT7Blue-T vector とライゲーションする場合)】

・試薬

Ligation high Ver. 2 (TOYOBO)

- ・操作
- 1) PCR 産物を制限酵素処理した DNA 断片の乾燥物に 5 μ L の滅菌水を加え、溶解した 後、その溶液に pT7Blue T-vector を 1 μ L 加え混和する。
- 2) サンプルと同量 (5 μ L) の Ligation high Ver. 2 を加える (計 10 μ L)。
- 3) 16°C で 2h ライゲーションを行う。

【形質転換】

- ・試薬
- 1) LB (AXI) 寒天培地
- 2) SOB 培地
- 3) SOC 培地
- ・操作
- 1) プラスミドを、5 min 氷冷する。
- 2) 凍結していたコンピテントセル (*E. coli* JM109 など) を融解後、直ちにプラスミドに加 える。
- 3) 氷中に 30 min 放置する。
- 4) 42°C で正確に 90 sec のヒートショックを行う。
- 5) 氷中で2 min 急冷する。
- 6) 200 µLの SOC 培地を加え、穏やかに懸濁する。
- 7) 37℃で振とうさせながら、1hインキュベートする。
- 8) 全量適当な抗生物質あるいは誘導物質を含んだ LB 寒天平板培地にプレーティングする。
- 9) 37°C で一晩培養する。

【DNA シークエンシング】

<DNA シークエンシング用プラスミド抽出>

[FlexiPrep Kit 使用(GE Healthcare)]

・試薬

- 1) LB 試験管培地
- 2) FlexiPrep Kit (GE Healthcare)
- 3) 2-プロパノール (関東化学)
- 4) 5 M NaCl
- 5) 100%冷エタノール
- 6) 70%冷エタノール
- 7) TE (pH 8.0)
- ・操作
- ストリークしたプレートから1サンプルにつき4本の1.5 mL LB 試験管培地(必要に 応じて抗生物質を添加)に植菌する。
- 2) 37℃で一晩振とう培養する(120 strokes/min)。
- 3) 1.5 mL ずつマイクロチューブに移し、6,000 rpm、3 min 遠心分離を行う。
- 4) DNA シークエンシング用プラスミド抽出キット (FlexPrep Kit) の Solution I を 200 μ L 加え、ピペッティングにより懸濁する。
- 5) Solution II を 200 µL 加え、チューブを転倒混和し、室温で 5 min 放置する。
- 6) Solution III を 200 µL 加え、チューブを転倒混和し、室温で 5 min 放置する。
- 7) 12,000 rpm、10 min 遠心分離し、上清を新しいマイクロチューブに移す。
- 8) 上清に0.7 倍量(420 µL)の2-プロパノールを加え、2~3 秒ボルテックスにかけ、室 温で10 min 放置する。
- 9) 12,000 rpm、10 min 遠心分離する。
- 10) 沈殿を取らないように、マイクロピペットで注意深く上清を完全に取り除く。
- 11) マイクロチューブのふたを開け、真空遠心乾燥機で 30 min 乾燥させる。
- Sephaglas FP のボトルを、円を描くようによく振り沈殿物を懸濁し、150 µL を乾燥ペレットに加え、ペレットが懸濁するまでボルテックスにかける。
- 13) 12,000 rpm、1 min 遠心分離し、上清をマイクロピペットで除く。
- 14) ペレットに 200 µL の wash buffer を加え、ボルテックスにより懸濁する。

- 15) 12,000 rpm、1 min 遠心分離し、上清をマイクロピペットで除く。
- 16) ペレットに 300 mL の 70% 冷エタノールを加え、ボルテックスにより 懸濁する。
- 17) 12,000 rpm、1 min 遠心分離し、上清をマイクロピペットで除く。
- 18) 乾燥しやすいように、マイクロチューブをボルテックスにかけ、ペレットを壁面にく っつける。ふたを開けて 37℃ のインキュベーター内でペレットを乾燥させる。
- ペレットに 50 µL の TE を加え、ボルテックスにより懸濁し、1 min 毎にボルテック スにかけながら室温で 5 min 放置する。
- 20) 12,000 rpm、1 min 遠心分離をし、上清を新しいマイクロチューブに移す。
- 19)、20)の操作をもう一度行い、上清を新しいマイクロチューブに移す(2本のマイ クロチューブを1本にまとめる)。
- 22) ペレットに 100 µL の TE を加え、19)、20)の操作をもう一度行う。
- 23) 12,000 rpm、10 min 遠心分離をし、上清を新しいマイクロチューブに移す。
- 24) この操作を数回(3回以上行うとよい)繰り返し、完全に Sephaglas を取り除く。
- 25) エタノール沈殿を行い、真空遠心乾燥機を用い、15~30 min ペレットを乾燥させる。
- 29) 適量の TE に溶解し、分光光度計を用いて DNA 濃度を測定する。

<DNA シークエンシング用サーマルサイクリング反応と解析>

[NEN Global Edition IR² System, LIC4200L 使用(LI-COR)]

- ・試薬
 - 1) Thermo Sequenase Cycle Sequencing Kit (USB)
 - 2) IRD800-labeled primer (M13 Forward、M13 Reverse) (日清紡)
 - 3) IR^2 Stop Solution (LI-COR)
 - 4) KB^{Plus}3.7% Gel Matrix (LI-COR)
 - 5) KB^{Plus}5.5% Gel Matrix (LI-COR)
 - 6) 10% APS: 過硫酸アンモニウム 0.1 g を 1 mL の超純水に溶解し、ボルテックスでよくかくはんする。4℃、遮光保存で2週間使用可能。
 - 7) TEMED (N, N, N', N, -Tetramethylethylenediamine) (Bio-Rad)
 - 8) 5×TBE buffer: Tris 54g、ホウ酸 27.5g、0.5 M EDTA (pH 8.0) 20 mL を超純水に溶 解し、1L に調製する。
 - 9) 0.8 × TBE buffer: 5 × TBE buffer を 6.25 倍希釈して作製する。

・ゲルの作製

Table A-6の組成でゲルを作製する。

Table A-6

	66 cm	41 cm
スペンサーの厚さ	0.2 mm	0.2 mm
KB ^{Plus} Gel Matrix	3.7% 40 mL	5.5% 30 mL
10% APS	230 µL	200 µL
TEMED	23 µL	$20\mu L$
泳動用 buffer	$0.8 \times TBE$	$0.8 \times TBE$
泳動時間	14 h	9 h

・DNA シークエンシング用サーマルサイクリング反応と解析

 マスターミックス用チューブに次の試薬、サンプルを入れて混合し、スピンダウンする(Table A-7)。まず ThermoSequenase polymerase 以外のものを入れたら一旦混ぜ、 スピンダウンする。酵素を扱うときは、保冷ボックス上で行う。

Table A-7 Components of reaction mixture

Coponents	Volume (μ L)
Templelate DNA (200~400 fmol)	Х
IR800 Dye labeled Primer (1.0 pmol/ml)	1.0
Reaction Buffer	1.0
ThermoSequenase polymerase	1.0
滅菌水	up to 8.5

※ 濃く短く(約 500~600 bp) 読む場合には、dNTPs は加えず、長く(800 bp 以上) 読 みたい場合には、dNTPs 1.0 µL を加え、滅菌水でメスアップする。また、DNA が二次構 造を取り、その先を読むことができない場合には、DMSO(上限 5%)を添加すると良 い。

- 2) 各ターミネーション反応用チューブ A/C/G/T の各ターミネーションミックスチャー (ddA、ddC、ddG、ddT) を 2.0 µL ずつ分注する。
- 3) 1) で調製したマスターミックスを 2.0 µL ずつターミネーション反応用チューブに分 注する。
- 4) 3) をサーマルサイクラーにセットし、下記反応プログラムでサーマルサイクラーに

かける (Table A-8)。

Table A-8 サイクリング条件

	Temperature	Time
Preheat	95°C	5 min
Denature	95°C	30 sec
Anneal	50°C	15 sec
Extend	70°C	50 sec (to step 2, x 30)
Cool	4°C	∞

- 5) 反応プログラムが終了したら、各チューブにIR² Stop Solution を 2.0 µL ずつ分注する。
- 6) 5) を 92°C、2 min 熱変性させ、直ちに氷冷する。
- 7) あらかじめ作製しておいた電気泳動用ゲルに、6)を1µL ずつアプライし、泳動(66 cm ゲルは 14 h、41 cm ゲルは 9 h)行う。得られた DNA の塩基配列について、
 Genetyx-Mac ソフトウェア(ゼネティックス)により解析し、NCBI BLAST 検索により相同性検索を行う。

【プラスミドの単離(アルカリ SDS 法)】

試薬

<u>1) Solution I(GTE 溶液)ストック</u>	ク
50 mM glucose	1.8 g
25 mM Tris-HCl (pH 8.0)	5 mL
10 mM EDTA (pH 8.0)	4 mL
	計 200 mL
121℃、20 min オートクレーブする	5。室温保存。
2) Solution II 試験管(1.5 mL)1	本分
0.2 N NaOH	8 µL
10% SDS	$20\mu L$
滅菌水	172 µL
	計 200 µL

使用時に調製する。

3) Solution III (3 M K, 5 M 酢酸) ストック

5 M 酢酸カリウム	60 mL
氷酢酸	11.5 mL
超純水	28.5 mL

計 100 mL

121℃、20分でオートクレーブする。室温保存。

- 操作
- プラスミドを保持した大腸菌の単コロニーを 1.5 mL の LB 培地(必要に応じて抗生物 質を入れる)に植菌し、37℃で一晩振とう培養(120 strokes/min)を行う。
- 2) 培養液をマイクロチューブに移し6,000 rpm、3 分間遠心する。
- 3) 菌体ペレットを 100 µL の Solution I に懸濁して室温で5 分間放置する。
- 200 µL の Solution II を加え、チューブを上下逆にして穏やかによく混和し、氷上で5 分間放置する。
- 5) 150 µL の Solution III を加え、同様に穏やかによく混和し、氷上で5 分間放置する。
- 6) 12,000 rpm、10 分間遠心後、上清を新たなマイクロチューブに移してフェノール処理 を数回繰り返す。
 ※ コピー数の少ない広宿主域ベクターなどの場合は、純度よく抽出するために3回 行った方が良い。
- フェノール処理後、上層を新しいチューブに移し、2.5 倍量の冷エタノールを加えて 混和し、-80℃で10分間放置した後、4℃、12,000 rpm、10分間遠心する。
- 8) 上清を取り除き、70% 冷エタノール(-25℃)1mL でリンス後、4℃、12,000 rpm、
 5 分間遠心する。
- 9) 上清をよく取り除き、真空遠心乾燥機で約15分間沈殿物を乾燥させ、沈殿物を 適量のTEもしくは滅菌水に溶解させる。このとき、試験管培地(1.5 mL)1本 あたり、pBluescript II KS⁺などの場合は20 µL に溶解させると良い。

【RNA 除去および制限酵素処理】

- ・試薬
 - 1) 10 mg/mL RNase A (DNase free)
 - 2) 制限酵素

- 3) $10 \times buffer$
- 4) 3 M NaOAc
- 5) 100%冷エタノール
- 6) 70%冷エタノール

・操作

- 1) プラスミド溶液を数 µL とり、滅菌水を加えて 19 µL にする。
- 2) 10 mg/ml RNase を 1 μ L 加える。
- 3) 37°C、10 min インキュベートする。
- RNA 除去処理後、それぞれに 10×buffer を 20 μL 添加し、滅菌水 169 μL を加え、これに制限酵素を各 1 μL 加えて、穏やかに混和する(計 200 μL)。
- 5) 37℃で4h~一晩インキュベートする。
- 制限酵素処理後、3 M NaOAc を 20 μL と、500 μL の 100%冷エタノールを加え、エタ ノール沈殿を行う。
- 7) 4℃、12,000 rpm、10 分間遠心分離して沈殿を得る。
- 8) 1 mLの70%冷エタノールで沈殿をリンスする。
- 9) 上清をよく取り除き、真空遠心乾燥機で約 15 分間沈殿物を乾燥させ、ライゲーションに用いる。

【ゲノム DNA の場合】

 Pseudomonas sp. 61-3 のゲノム DNA について制限酵素処理を行う。下記をマイクロチュ ーブに入れ、400 µL スケールで各制限酵素の最適温度で制限酵素処理を一晩行う。

ゲノム DNA	10µg程度
10 × buffer	$40\mu L$
制限酵素	5 µL
滅菌水	Up to $400 \mu\text{L}$

- 2) 反応後、1/10 倍量(40 µL)の5 M NaCl と 2.5 倍量(1 mL)の100%冷エタノールを加 えて混和し、-80℃で10分間放置した後、4℃、12,000 rpm、10分間遠心する(エタノ ール沈殿)。
- 3) 真空遠心乾燥機で約15分間沈殿物を乾燥させ、8 µLの滅菌水に溶解する。全量を電気 泳動用サンプルとする。

【プラスミドベクターのアルカリフォスファターゼ処理(脱リン酸処理)】

[CIAP (TOYOBO)]

・試薬

1) $10 \times buffer$

2) CIAP (Calf Intestine Alkaline Phosphatase)

3) 3 M NaOAc

4) 100%冷エタノール

5)70%冷エタノール

・操作

<5'突出末端の場合>

- 1. 制限酵素で消化したプラスミドベクターの乾燥ペレットを滅菌水 44 μ L に溶解した後、 5 μ L の 10 × buffer、1 μ L の CIAP を加える。
- 2. 37℃、1hインキュベートする。
- 3. 反応終了後、滅菌水で 200 µL にし、等量(約 200 µL)のフェノール/クロロホルム/ イソアミルアルコール(25:24:1)を加え、かくはんする。
- 4. 12,000 rpm、10 min 遠心分離する。
- 5. 上清を新しいマイクロチューブに移し、エタノール沈殿を行う。
- エタノール沈殿後、真空遠心乾燥機で約15 min 沈殿物を乾燥させ、ライゲーションに 用いる。

<平滑末端及び3'突出末端の場合>

- 制限酵素で消化したプラスミドベクター (pBBR1MCS-2)の乾燥ペレットを滅菌水 170 μL に溶解した後、20 μL の 10 × CIAP buffer、10 μL の CIAP を加える。
- 2) 37℃、30 min インキュベートする。
- 3) 50°C、1hインキュベートする。
- 4) 反応終了後、等量(約200 µL)のフェノール/クロロホルム/イソアミルアルコール
 (25:24:1)を加え、かくはんする。
- 5) 12,000 rpm、10 min 遠心分離する。
- 6) 上清を新しいマイクロチューブに移し、1/10 倍量(20 µL)の 3 M NaOAc と 2.5 倍量(500

*µ*L)の100% 冷エタノールを加えて混和し、-80°C で 10 min 放置した後、12,000 rpm、 10 min、4°C 遠心分離する。

- 7) 上清を取り除き、70% 冷エタノール1 mL でリンス後、4℃、12,000 rpm、5 min 遠心する。
- 8) 上清をよく取り除き、真空遠心乾燥機で約15 min 沈殿物を乾燥させ、ライゲーション に用いる。

【標識プローブ作製】

[Gene Images CDP-Star Detection Kit (GE Healthcare) 使用]

- ・試薬
- 1) Nucleotide mix
- 2) Primer solution
- 3) 酵素溶液 (Klenow)
- 4) 0.5 M EDTA
- 操作
- それぞれのプローブ用 DNA 断片を 100℃ で 5 分間熱変性後、ただちに 5 分間氷冷(2 本鎖の DNA 断片を 1 本鎖にした後、2 本鎖に戻らないようにするため)。
- 2) 氷上で、熱変性 DNA に下記の試薬を加える(Klenow は必ず最後に加え、失活しやすいので優しくピペッティングする)。

Nucleotide mix	10 µL
Primer solution	5 µL
酵素溶液(Klenow)	1 µL
滅菌水	Up to 50 μ L

- 3) 37℃ で 1~4 時間または室温で一晩インキュベーションを行う(37℃ でのインキュベーションは最大 4 時間まで)。
- 4) 最終濃度 20 mM になるように EDTA を加え(反応溶液 50 µL に対して 0.5 M EDTA ス トック溶液を 2.1 µL 添加)、反応を停止させる。
- 5) -20°C で遮光保存(6ヶ月間安定)。

[DIG DNA Labeling and Detection Kit (Roche) 使用]

・試薬

- 1) Hexanucleotide Mix
- 2) dNTP Mix
- 3) 酵素溶液 (Klenow)
- 4) TE
- 操作
- 1) プローブ用 DNA 断片を熱変性後、ただちに 5 分間氷冷(2 本鎖の DNA 断片を1 本鎖に した後、2 本鎖に戻らないようにするため)。
- 2) 氷上で、熱変性 DNA(約1µg)に下記の試薬を加える(Klenow は必ず最後に加え、失 活しやすいので優しくピペッティングする)。

Nucleotide mix	$10\mu L$
Primer solution	5 µL
酵素溶液(Klenow)	$1 \mu L$
滅菌水	Up to $50 \mu L$

3) 37℃ で 20 時間インキュベーションを行う。

 4) 最終濃度 20 ng/µL になるように TE を加え、反応を停止させる。上述のように作製した プローブを用いて、電気泳動、DNA トランスファーおよびサザンハイブリダイゼーションを行う。

【標識プローブの取り込み効率チェック】

・試薬

1) hybridization buffer (0.125 mL/cm^2)

$20 \times SSC$	50 mL
デキストラン硫酸(SIGMA)	10 g
blocking 試薬(全量の1/20量)	10 mL
10%SDS	2 mL
超純水	Up to 200 mL

上記を耐圧ビンに入れ、ウォーターバスで 60°C に加温しながら溶かし、メスシリンダーに移して 200 mL にメスアップする。再び耐圧ビンに戻してスターラーバーを入れたままオ

ートクレーブする。-28℃で12ヶ月安定。

2) buffer A (pH 9.5)		
Tris	0.1 M	18.17 g
NaCl	0.3 M	26.3 g
超純水		Up to 1.5 L

TrisとNaClを約1.4Lの超純水に溶かし、濃HClでpH9.5に調整後1.5Lにメスアップし、 オートクレーブする。
3)標識プローブ

加えた buffer に対して 5~10 ng/mL のプローブ溶液をマイクロチューブに取り、これ

に20µL以上(通常は20µLでよい)となるよう滅菌水を加えたものを使用する。

4) 1 次洗浄 buffer (2~5 mL/cm ²)		
$20 \times SSC$	7.5 mL	
10%SDS	1.5 mL	
超純水	Up to 150 mL	
5) 2 次洗浄 buffer (2~5 mL/cm ²)		
$\frac{37 \times 2000}{20 \times SSC}$	0.75 mL	
10%SDS	1.5 mL	
超純水	Up to 150 mL	
6) blocking 用試薬 (0.75~1 mL/c	cm^2)	
buffer A	90 mL	
blocking 試薬(全量の 10%)	10 mL	
	計 100 mL	
7) 希釈抗体溶液(0.3 mL/cm ²)		
BSA (0.5% (w/v)) (SIGMA-ALDRICH [®])		
buffer A		
AP 標識フルオレセイン抗体(GE Healthcare: 全量の 0.02%)		
あるいは		
AP 標識抗フルオレセイン、Fab フラグメント (Roche: 全量の 0.01%)		
8) 0.3% (w/w) Tween 20 含有 buffer A (2~5 mL/cm ²)		
Tween 20	1.35 mL	

buffer A Up to 450 mL

9) 検出試薬: CDP-Star (Gene Images, GE Healthcare)

操作

- 1) 作製した標識プローブの 10¹~10⁸ 希釈を用意する。
- 2) 実験台、ハサミ、ピンセットをエタノール消毒後、手袋を着用してナイロンメンブレン (Hybond-N⁺, GE Healthcare)を準備し (右上角を切っておく)、標識プローブの原液、 $10^1 \sim 10^8$ 希釈液をそれぞれ 1 μ L ずつスポットする。
- 3) 2×SSC (DNA transfer (ナイロン膜への転写)参照) で5分間振とうする。
- 4) Blotting paper をメンブレンよりも少し大きめに切ったものを3枚準備する。1枚の上にメンブレンをのせて水分を除いたら、新たな blotting paper の上で風乾後、残りの1枚をのせてメンブレンをはさみ、アルミホイルで軽く包んで80°C、120分間 baking により固定する。
- 5) Hybridization buffer 中で 68°C、一晩インキュベートする。
- 6) 1 次洗浄 buffer (2~5 mL/cm²) で 68°C、15 分間 ×2回振とうする。1 次洗浄 buffer、2 次洗浄 buffer ともあらかじめ 68°C に加温してから用いる。
- 7) 2次洗浄 buffer (2~5 mL/cm²) で 68℃、15 分間振とうする。
- 8) Buffer A で5分間洗浄する(2 mL/cm²以上)。
- 9) 室温で、blocking 試薬中で 60 分間 blocking を行う (0.75~1 mL/cm²)。
- 10) Buffer A で5分間洗浄する。
- 11) メンブレンをハイブリバックに移し、室温で 60 分間穏やかに振とうし、希釈抗体溶液 と反応させる (0.3 mL/cm²)。
- 12) 0.3% (w/w) Tween 20 含有 buffer A で 10 分間 × 3 回洗浄する (2~5 mL/cm²)。
- 13) Buffer A で 5 分間洗浄する。
- 14) 平らな場所に敷いたサランラップの上に、buffer A をある程度除いたメンブレンをブロット面を上にして置く。
- 15) 検出試薬(CDP-Star)を全体に均一に滴下後(1~1.5 mL 程度)、ラップを四方に傾け てさらに均一化させて 2~5 分間放置する。
- 16) Blotting paper で余分な検出試薬を除き、そのままラップに包んで 37℃ で 10 分程度インキュベートしてから化学発光を化学発光測定機(ルミノ・イメージアナライザーLAS-1000plus、富士写真フイルム)で検出する。

【サザンハイブリダイゼーション電気泳動】

- ・試薬
- SeaKem GTG Agarose (CAMBREX)
- $1 \times TAE$ buffer
- EtBr ストック溶液
- 分子量マーカー Illuminator Nonradioactive Lambda/*Hind*III Marker (Stratagene)
- 色素 Loading Dye (TOYOBO)
- ・電気泳動装置

 $15 \text{ cm} \times 16 \text{ cm}$: SUB-CELL GT (Bio-Rad)

・操作

制限酵素処理済のゲノム DNA 溶液 8 μ L に、色素 2 μ L を混合したものをサンプルと して、ゲルのウェルにアプライし、30 V で 12 時間電気泳動を行う。制限酵素処理済の プラスミド (pLA2917)を用いるときは、反応液 (200 μ L)から 1/20~1/50 量を取り出 し色素を加えて電気泳動用サンプルとする。また、サンプルと同時に分子量マーカー (Illuminator Nonradioactive Lambda/*Hin*dIII Marker; STRATAGENE)もゲルのウェルにア プライする。EtBr に 30 分間振とう染色後、蒸留水で 30 分間緩やかに振とう洗浄する。 UV (長波長 365 nm)でバンドを確認する (次の DNA トランスファーへ移る)。

【DNA トランスファー (ナイロン膜への転写)】

- ・試薬
- 1) 0.25 N HCl(超純水で調製する。)
- 2) 0.5 N NaOH (超純水で調製する。)

3) 20×SSC ストック溶液1L (pH 7.0)

NaCl	333 mM	175.3 g
クエン酸 3Na 二水和物	333 mM	88.2 g
超純水		Up to 1 L

※ pH 調整後、オートクレーブする。

- ・操作
- 1) 0.25 NHCl で15分間振とうする。
- 2) 超純水で5分間 ×2 回洗浄する。
- 3) 0.5 N NaOH で 30 分間振とうする。
- 4) ゲルより少し大きめにナイロンメンブレン(Hybond-N⁺, GE Healthcare)を、ナイロン メンブレンよりも少し大きめに blotting paper を切る。
 ※ ハサミ、プラスチック製ピンセットはエタノール消毒してから使用する。
 ※ メンブレンは目印として、右上角を切っておく。
- 5) トレーに超純水を入れ、blotting paper→メンブレンの順にひたす。
- 6) 同様に 10×SSC にひたす(20×SSC ストック溶液を希釈して用いる)。
- 7)吸引装置(VACCUM BLOTTER (Bio-Rad))をセットする。以下のように順に気泡が 入らないよう空気を抜きながらのせていく。

上	sealing frame
1	アガロースゲル
	window gasket(ゲルサイズの穴が開いた緑色のビ
	ニール)
I	メンブレン
	blotting paper

- 8) Sealing frame をセットし、真空ポンプの黒いボルト型のねじが緩んでいることを確認 してからスイッチを ON にする。
- ねじをゆっくり締めながらメーターを 2~3 in Hg 程度にし、ゲルが動かないように固定する。このとき、ゲルのレーンにシャープペン等で印をつけておく。
- 10) 10×SSC をゲル表面が浸るくらいまで注ぎ、7 in Hg で 90 分間吸引する。
 ※ ゲルが乾かないよう、10×SSC の量の変化に注意する。
- 11) トランスファー後、メンブレンを2×SSC で5分間振とうする。
- 12) Blotting paper をメンブレンよりも少し大きめに切ったものを3枚準備する。1枚の上に メンブレンをのせて水分を除いたら、新たな blotting paper の上で風乾後、残りの1枚 をのせてメンブレンをはさみ、アルミホイルで軽く包んで80°C、120分間 baking によ り固定し、化学発光法による検出操作を行う。
- 10) Baking 後はこのままの状態で長期保存可。

11) ゲルは EtBr で再染色(15 分間)し、UV で DNA のメンブレンへの転写を確認する。

【Southern hybridization 検出(化学発光法)】

- 試薬
 【標識プローブの取り込み効率チェック】参照。
- 操作
- 1) Hybridization オーブンと hybridization buffer を 68℃に、ヒートブロックを 100℃にあらかじめ加温しておく。
- メンブレンをハイブリバックに入れ、hybridization buffer (0.125 mL/cm²) を加えて封をし、オーブン内で 68°C、30 分間の prehybridization を行う。
- 3) 標識プローブを 100℃、5 分間熱変性させ、すぐに氷冷する。
 (プローブが 2 本鎖に戻らないように、少し長く熱変性してもよい。)
- Prehybridization したハイブリバックの一部を切り、熱変性したプローブをメンブレン に直接かからないよう buffer 中にマイクロピペットで加える。
- 5) 再び封をしてオーブン内で 68°C、overnight でインキュベートする。
 ※ ハイブリダイゼーション温度は、60~68°C で行うのが基本である。温度が低いと 非特異的結合が行われる場合があるので、そのときには温度を上げる必要がある。また、高い温度からやってみてシグナルが見られない場合は、温度を下げてやってみる とよい。
- 6) 1 次洗浄 buffer (2~5 mL/cm²) で 68°C、15 分間×2 回振とうする。1 次洗浄 buffer、2 次洗浄 buffer ともあらかじめ 68°C に加温してから用いる。
- 7) 2 次洗浄 buffer (2~5 mL/cm²) で 68℃、15 分間振とうする。
- 8) Buffer A で 5 分間洗浄する (2 mL/cm²以上)。
- 9) 室温で、blocking 試薬中で 60 分間 blocking を行う (0.75~1 mL/cm²)。
- 10) Buffer A で 5 分間洗浄する。
- 11) メンブレンをハイブリバックに移し、室温で 60 分間穏やかに振とうし、希釈抗体溶液 と反応させる (0.3 mL/cm²)。
- 12) 0.3% (w/w) Tween 20 含有 buffer A で 10 分間 × 3 回洗浄する (2~5 mL/cm²)。
- 13) Buffer A で 5 分間洗浄する。

- 14) 平らな場所に敷いたサランラップの上に、buffer A をある程度除いたメンブレンをブ ロット面を上にして置く。
- 15)検出試薬(CDP-Star)を全体に均一に滴下後(1~1.5 mL 程度)、ラップを四方に傾け てさらに均一化させて 2~5 分間放置する。
- 16) Blotting paper で余分な検出試薬を除き、そのままラップに包んで 37℃ で 10 分程度インキュベートしてから化学発光を化学発光測定機(ルミノ・イメージアナライザーLAS-1000plus、富士写真フイルム)で検出する。

【ゲノム DNA ライブラリーの作製(Pseudomonas sp. 61-3の場合)】

- ・操作
- 反応液 500 µL 中のゲノム DNA 150 µg に Sau3AI (1×M buffer で 30 倍希釈したもの) を1 µL 加える。37℃ に設定しておいたヒートブロックにて反応させ、3、6、9、12、 15、20、25、30、40、50 分毎に 50 µL ずつ抜き取り、前もって、5 µL の 0.5 M EDTA (pH 8.0) と 2.5 µL の 10%SDS を入れておいたマイクロチューブに移し、氷上に保存 しておく。

$10 \times M$ buffer	50 µL
ゲノム DNA	150 µg
Sau3AI(30 倍希釈)	1 µL
滅菌水	up to $500 \mu\text{L}$

- 2) 各々より 7.5 µL ずつとり、アガロースゲルにて電気泳動を行い、切断の程度(サイズ) を調べる。
- チューブの残り(50 µL)に滅菌水 150 µL を添加し、等量(200 µL)のフェノール/ク ロロホルム/イソアミルアルコール(25:24:1)を加え、よく混和する(フェノール処 理)。
- 4) 12,000 rpm で5分間遠心する。
- 5) 上層を新しいチューブに移し、もう一度フェノール処理を行う。
- 6) 上層を新しいチューブに移し、エタノール沈殿を行う。
- 7) 真空遠心乾燥後、10 µLの滅菌水に溶解し、-20°Cにて冷凍保存する。

【プレーティングセルの調製】

1) 宿主 *E. coli* S17-1 を 0.2%マルトース含有 LB 培地 1.5 mL に接種し、30℃ にて一晩培養 する。

0.2%マルトース含有 LB 培地	(1 L)
Bacto Tryptone	10 g
Yeast extract	5 g
NaCl	5 g
$MgSO_4 \cdot 7H_2O$	2.5 g
マルトース	2 g

- ※ 蒸留水を加えて 1L とし、pH7.0 に調整した後、121℃、20 分オートクレーブ殺菌 を行う。
- 2) 全量を低速遠心(4℃、3,500 rpm、10分)する。
- L清を捨て、集菌した菌に、1 mL の 10 mM MgSO₄を加えてピペッティングする。この状態で、4℃、2 週間安定。

【pLA2917 (コスミドベクター)の調製】

1) 約2µgのpLA2917をBgIIIで切断する。37℃で一晩処理を行う。

pLA2917	2.0 µg
H × buffer	$40\mu L$
BglII	1 µL
滅菌水	Up to $400 \mu\text{L}$

- 2) BgIII で切断した pLA2917 をアルカリフォスファターゼ処理する。
- 3) フェノール/クロロホルム/イソアミルアルコール(25:24:1)処理を行い、真空遠心乾燥させる。

【ライゲーション、パッケージングおよび形質導入】

- 1) ゲノム DNA の部分消化による DNA 断片のサイズ分布の中心が 10~20-kb にあるチュ ーブを選択する。
- アルカリフォスファターゼ処理した pLA2917/Bg/II の乾燥物に、ゲノム DNA/Sau3AI 溶液 10 µL のうち 2 µL を加え、溶解させる。
- 3) $1 \mu L \mathcal{O}$ Ligation High (TOYOBO) を加える (計 $3 \mu L$ となる)。
- 4) 16℃、一晩ライゲーションする。

5) ライゲーション産物 3 µL をインビトロパッケージングする。インビトロパッケージン グには、Gigapack III Gold Packaging Extract (Stratagene)を用いる。ライゲーション産 物 3 µL に packaging extract 25 µL を加える。その後、室温(22°C)にて、2 時間放置す る。

※ Packaging extract を加えた後、ゆっくりピペッティングする。泡が生じたら、スピンダウンをして泡をなくす。激しくすると、形質導入効率が落ちる。

 SM buffer を 500 µL 加え、ピペッティングする。その後、大腸菌などの混雑物が増殖 しないように 20 µL のクロロホルムを加え、おだやかに混和する。4℃で1ヶ月保存可 能。

SM buffer (1 L)		
NaCl	5.8 g	
$MgSO_4 \cdot 7H_20$	2.0 g	
1M Tris-HCl (pH 7.5)	50 mL	
2% gelatin	5 mL	

※ 121℃、20分オートクレーブ殺菌を行う。

- サンプルを 10 µL (10 倍希釈) および 25 µL (4 倍希釈) とって SM buffer で 100 µL に 希釈する。これにプレーティングセル 100 µL を加え、30 分間室温 (22℃) で放置する。 その後、LB 培地 800 µL を加える。
- 8) ヒートブロックにて、37℃、1 時間インキュベーションを行う。15 分毎にボルテック スにかける。
- 9) 6,000 rpm、3 分間遠心して、上清を捨て、菌体ペレットを 100 µL の LB 培地に懸濁する。
- 10) サンプル全量を LB (Tc) プレートにプレーティングする。37℃、一晩培養し、明朝コロニー数を数える。
 ※ 微生物のゲノムのサイズから考えて、DNA 挿入断片を有する遺伝子ライブラリーから 99%の確率で目的遺伝子を得るためには、5000 個以上のコロニーが必要である。したがって、5000 個に満たない場合は、やり直した方が良い。
- 形質導入した残りのサンプルからクロロホルムを取り除く(スピンダウンを行い、クロロホルムを下に落とす)。その後、1 サンプルにつき 100 µL になるように SM buffer を加える。その後、プレーティングセル 100 µL を加え、30 分間室温(22°C) にて放置する。その後、LB 培地 800 µL を加える。

- 12) 8)、9)、10)の操作を行う。
- 13) コロニーを形成したプレートにLB 培地を1mL 加えて、各プレートのコロニーをかき 集め、1つにまとめる。
- 14) 集めた菌体懸濁液全量に対して、15%グリセロール濃度になるように60%グリセロー ルを加える。
- 15) ボルテックスでよく混ぜる。
- 16) セラムチューブに分注し、-80℃にて冷凍保存する。

(Pseudomonas sp. 61-3 ゲノム DNA ライブラリーの完成)

【コロニーハイブリダイゼーション】

・試薬

1)変性溶液(メンブレン1枚分)

5 N NaOH	(0.5 N NaOH)	0.1 mL
5 M NaCl	(1.5 M NaCl)	0.3 mL
滅菌水		0.6 mL
		計 1 ml

2) 中和溶液(1 M Tris-HCl(pH 7.5))

3) 50 mM NaOH-0.1%SDS 溶液

招紘水	98 mI
10%SDS	1 mL
5 N NaOH	1 mL

- ・操作(手袋を着用し、エタノール消毒したピンセットを用いる)
- クリーンベンチ内でコロニー専用の円形のナイロンメンブレン (Colony/Plaque Screen, PerkinElmer Life Sciences) をコロニーの上からかぶせる。
- メンブレンの全体がプレートの水分によって湿ったら(メンブレンが浮いているとき はごく軽くピンセットでなでるとよい)、手早くプレートの裏にメンブレンの穴もしく は切れ込みの位置(3ヶ所)をマジック等でマークする。
- メンブレンをプレートから静かにはがす。メンブレンのコロニークローンを上にして、 blotting paper 上で数分間風乾させる。プレートは37℃で5時間培養後、4℃で保存す る。

- サランラップを敷いた上に変性溶液(1 mL/枚)を滴下し、コロニークローンを上にしてメンブレンを置く。ラップを動かして溶液を均一にメンブレンに行き渡らせ、5 分間静置する。
- 5) メンブレンをピンセットでつまみ、中和溶液(1 M Tris-HCl (pH 7.5)) に浸した blotting paper 上に移して 5 分間静置する。
- 6) メンブレンを2×SSC で、1~2分間 ×2 回洗浄する。
- 7) 新しい blotting paper 上で 15 分間風乾させる。
- 乾燥したメンブレンを blotting paper ではさみ、アルミホイルで軽く包んで 80℃、120 分間 baking により固定する(この状態で安定、保存可)。
- baking したメンブレンを 50 mM NaOH-0.1%SDS 溶液中で穏やかに振とうしながら 15 分間洗浄する。
- 10) 2×SSC で2、3 分間洗浄する(中和処理)。メンブレンに菌が残存していたら2×SSC を浸透させたキムタオルをメンブレンの上にのせ、軽くたたく(非特異的なバックグ ラウンドを低下させるため)。
- 11) blotting paper 上で風乾させる。
- 12) Southern hybridization 検出を行う。

【接合伝達】

- 操作
- 1) 作製したプラスミドを保持する *E. coli* S17-1 を 1.5 mL の LB 試験管培地(必要に応じて 抗生物質を添加)に植菌し、37℃、120 strokes/mim で一晩培養する。
- 2) 一方宿主となる菌株 (*Pseudomonas* 属細菌あるいは *R. eutropha*) は 1.5 mL の NB 試験管 培地に植菌し、120 strokes/min、最適生育温度で一晩培養する。
- 3) 一晩培養後、*E. coli* S17-1 と宿主のそれぞれの培養液から、100 µL ずつマイクロチュー ブに採取して混合し、宿主の最適生育温度で、120 strokes/min で 6 から 8 時間培養する。
- 4) その後、混合溶液を 10 倍および 100 倍希釈し、原液、10 倍希釈液、100 倍希釈液の 3 つをシモンズ・クエン酸寒天平板培地(必要に応じて抗生物質を添加)(Table A-5 参照) にプレーティングし、宿主の最適生育温度で2から3日間培養する。
- 5) プレーティング後、2から3日でコロニーが形成される。そして形成されたコロニーから大小様々な大きさのものをいくつか選択し、新しいシモンズ・クエン酸寒天平板培地

にストリークし、一晩培養する。

[SDS-PAGE]

- ・ 試薬
- 1.5 M Tris-HCl (pH 8.8) (分離ゲル buffer の保存溶液)
 Tris (トリス) 181.7 g を超純水で溶解して 1 L にする。濃塩酸を用いて pH を 8.8 に調 整する。
- 0.5 M Tris-HCl (pH 6.8) (濃縮ゲル buffer の保存溶液)
 Tris (トリス) 60.6 g を超純水で溶解して1Lにする。濃塩酸を用いて pH を 6.8 にする。
- 3) $10 \times \text{Running}$ (Tris-glycine) buffer

		最終濃度
Tris-base	30.3 g	0.25 M
Glycine	144 g	1.92 M
10% SDS	10 mL	1%
		計 1 L

- 4) 1×Running (Tris-glycine) buffer: 10×Running (Tris-glycine) buffer を 10 倍希釈して用いる。
- 5) 10% APS (過硫酸アンモニウム)
- 6) TEMED (N, N, N', N, -Tetramethylethylenediamine) (Bio-Rad)
- 7) 30% アクリルアミド/ビス保存溶液(30% T, 2.67% C); 30gのアクリルアミド/ビス混合試薬 37.5:1 (Bio-Rad) 超純水に溶解し、全量 100 mL にする。
- 8) $2 \times \text{Sample buffer}$

0.5 M Tris-HCl (pH 6.8)	2 mL
10% SDS	4 mL
2-Mercaptoethanol	1.2 mL
Glycerol	2 mL
滅菌水	0.8 mL
1% Bromophenol bule	0.4 mL
	計 10 mL

9) 分離ゲル組成

ゲル濃度 (%T)	14
超純水	1.44 mL
30% アクリルアミド / ビス	3.0 mL
ゲル buffer (1.5 M Tris-HCl (pH 8.8))	1.5 mL
10% SDS	60 µL
10% APS	$25 \mu L$
TEMED	$4 \mu L$
큵┝	6 mL
10) 濃縮ゲル組成	
ゲル濃度 (%T)	4
超純水	1.22 mL
30% アクリルアミド / ビス	0.26 mL
ゲル buffer (0.5 M Tris-HCl (pH 6.8))	0.5 mL
10% SDS	$20\mu L$
10% APS	$25 \mu L$
TEMED	4 µL
₽	2 mL

※以上、ゲル厚0.75mmの組成

- 11) 分子量マーカー; LMW Calibration Kit for SDS Electrophoresis (GE Healthcare)、Precision Plus Protein Dual Xtra Standards (Bio-Rad)
- 12) 染色液(Bio-SafeCoomassie (Bio-Rad))
- 13) 水飽和イソブタノール (2-メチル-1-プロパノール)
- 操作

<ポリアクリルアミドゲルの作製>

- 1) APS と TEMED 以外の試薬を全て混合し、減圧下で少なくとも 15 min 脱気し、脱気したモノマー溶液に APS と TEMED を添加してよく混合し、分離ゲルモノマー溶液を調製する。
- 2) ピペットを用いてガラスプレートにつけた印(ガラスプレートの上部から 2 cm の位置)のところまで素早く注入する。泡立った場合はろ紙を用いて取り除く。
 ※ ゲルの高さは、モノマーが重合する際のゲルの縮みや水の発生に伴い、注入したモノマーの高さよりも低くなるため、注入する際にはガラスプレートの印よりも数 mm上まで注入する。

- 注入したモノマー溶液の上に、直ちに水飽和イソブタノールを重層し、分離ゲル を 固化(45 min~1 h)させる。
- 4) 重層した水飽和イソブタノールを捨て、超純水でよく洗浄する。ゲル表面が脱水されるため、水飽和イソブタノールを重層したまま1h以上放置しないようにする。
- 5) APS と TEMED 以外の試薬を全て混合し、減圧下で少なくとも 15 min 脱気し、脱気し たモノマー溶液に APS と TEMED を添加してよく混合し、濃縮ゲルモノマー溶液を調 製する。
- 6) 濃縮ゲルを重層する前に、分離ゲルの表面の水分を、ろ紙などを用いて取り除く。
- ピペットなどを用いてショートガラスプレートの上端まで素早く注入し、コームを差し込んで濃縮ゲルを固化(30 min~1 h)させる。

<電気泳動>

- LMW Marker (GE Healthcare) は2 µL、サンプルは10~12 µL (タンパク質量約15~ 50 µg) をゲルにアプライする。
- 2) 150 V で約 90 min 電気泳動を行う(指示薬である BPB が下端に流れるまで泳動する)。
- 3) 電気泳動後、ガラスを外してゲルを取り出し、ゲルを蒸留水で5 min 振とうし、これ を3回繰返す。
- 4) 蒸留水を捨て、ゲル1枚につき Bio-Safe Coomassie (Bio-Rad) 50 mL で1h~一晩振と うする。
- 5) Bio-Safe Coomassie を捨て、蒸留水で少なくとも 30 min 洗浄し、その後、バックグラ ウンドがなくなるまで数回、水を換えて洗浄する。
- 6) 少量の超純水とともにハイブリバックにいれてスキャナーにて画像をパソコンに取り込む。

【ガスクロマトグラフィー (GC) による PHA の分析】

<坂口フラスコ培養>

- 操作
- 1.5 mLのNB培地(必要に応じて抗生物質を添加)に目的の組換え株を植菌し、組換 え株の最適温度で、120 strokes/minで12h~18h振とう培養する。
- 2) 培養後、初発菌体濃度が Am=0.05 となるように NB 培養液を 2% グルコースを含む 100

mLのMS培地(必要に応じて抗生物質を添加)を含む 500 mL 容の坂口フラスコに植 菌し、48 h または 72 h 振とう培養(130 strokes/min)を行う。

- 3) 培養液を遠心管に移し、坂口フラスコは蒸留水で共洗いする。
- 4) 冷却遠心機で、4°C、7,000 rpm、10 分間遠心分離する。
- 5) 上清を捨て、蒸留水を遠心管の中のペレットを崩すように加えていく。その後、蒸留 水を 100 mL 程度入れ、懸濁する。
- 6) 4°C、7,000 rpm、10 分間遠心分離する。
- 7) 上清を捨てる。
- 8) 5)~7)をもう一度繰り返す。
- 9) 少量の蒸留水で遠心管のペレットを崩し、ピペッティングで懸濁する。
- 10) あらかじめ重量を量っておいたマルエム容器に移す。
- 11) -80℃で4時間以上凍結させ、凍結乾燥機で乾燥させる(2日程度)。

<PHA の分析>

PHA の定量は、得られた乾燥菌体に含まれる PHA をメタノリシスによって、3-ヒドロ キシアルカン酸メチルエステルに変換し、ガスクロマトグラフィー(GC)を用いて行った。

- 操作
- SDS-PAGE 使用後のポリエステル顆粒懸濁液の残り(SDS-PAGE 使用後の残量約 50 ~100 µL) あるいは、乾燥菌体約 30 mg をねじ口試験管に入れる。
- 1.7 mLのメタノールと0.3 mLの濃硫酸(硫酸メタノール:2 mL)とクロロホルム2 mL を加え、口を密封した後に100°C、140 分メタノリシスを行う(途中 30 分毎にかくは んする)。
- 3) 室温まで放冷し、1mLの蒸留水を加えて1分間激しくかくはんする。
- 4) 15~20 分静置後、二層に分離した下層(クロロホルム層)をパスツールピペットで分 取し、内部標準物質として等量の0.1%カプリル酸メチルのクロロホルム溶液と混合す る(0.5 mL ずつ計 1 mL)。これをガスクロマトグラフィーに供する。
<ガスクロマトグラフィー>

ガスクロマトグラフ装置

ガスクロマトグラフ装置は GC-17A(Shimadzu)を、カラムに Inert Cap1(0.25 mm I.D× 30 m, 0.4 mm; GL Sciences)を用いて水素イオン化検出器により検出する。GC 面積の積分 には、C-R7A plus CHROMATOPAC(Shimadzu)を用いる。GC による測定条件は以下のよ うに設定する(Tables A-9 and A-10)。

Table A-9	(温度・	時間設定)
-----------	------	-------

ディテクター温度	(DET. TEMP)	250°C
インジェクター温度	(INJ)	250°C
カラムオーブン初期温度	(INT. TEMP)	100°C
初期温度保持時間	(INT. TIME)	0 min
カラム昇温速度	(PROG. RATE)	8°C/min
カラム最終温度	(FINAL TEMP)	280°C
昇温最終温度保持時間	(FINAL TIME)	5 min

Table A-10(ガス流量)

Air	50 mL/min
H_2	50 mL/min
He	60 mL/min

・ サンプル注入量

サンプルの注入にはマイクロシリンジを用い、一回の注入量は1µLとする。

・ 3-ヒドロキシアルカン酸メチルの保持時間

各ピークの積分値をモル相対値に変換するためには、相対感度の逆数(補正係数)が必要である。表に各種 3-ヒドロキシアルカン酸メチルの補正係数を示す(Table A-11)。

	Table	A-	11
--	-------	----	----

3-hydroxyalkanoate	保持時間(min)	補正係数
3-hydroxybutyrate (C4)	3.57	1.00
3-hydroxyhexanoate (C6)	5.74	0.51
3-hydroxyoctanoate (C8)	8.97	0.28
3-hydroxydecanoate (C10)	12.29	0.28
3-hydroxy-5-cis-dodecanoate (C12')	15.05	0.28
3-hydroxydodecanoate (C12)	15.28	0.28

3 つのピークの a, b, c の積分値がそれぞれ A, B, C で、補正係数が X, Y, Z であった場合、 a のモル分率を次式で求める。

aのモル分率 (mol%) =
$$\frac{(A \times X)}{(A \times X + B \times Y + C \times Z)} \times 100$$

菌体内のポリエステル含率を求めるにあたっては、カプリル酸メチルを内部標準物質として用いる。カプリル酸メチルの保持時間は 6.84 min である。その結果、得られたクロマト グラムに 3 つのピーク a,b,c が見られ、その積分値が A,B,C であり、カプリル酸メチルの ピークの積分値が S であったとすると、菌体内ポリエステル含率 P は次式で求められる。

P (wt%) =k ×
$$\frac{(A \times X + B \times Y + C \times Z)}{m \times s} \times 100$$

k はあらかじめポリエステル含率がわかっている菌体から決定した定数(5.4)、m はサン プルをつくるときに用いた乾燥菌体重量(mg)である。

【Kination 反応 (DNA の 5'末端のリン酸化や標識、PCR 産物のリン酸化) (T4 Polynucleotide Kinase (TOYOBO))】

・試薬

1) Denaturing buffer

2) 10 × Blunt End Kinase Buffer	10 µL
ATP	1 m M
T4 Polynucleotide kinase	$1\mu L$
滅菌水	up to $100 \mu L$

- 3) TE 飽和フェノール
- 4) クロロホルム/イソアミルアルコール (24:1)
- ・操作(平滑末端および3'突出2本鎖 DNA のリン酸化)
- 1) 基質 DNA 5~20 pmol に Denaturing buffer を加えて 75 μ L にする。
- 2) 90°C、2 min 加熱する。
- 3) 氷上で急冷する。
- 4) 試薬2)を加える。
- 5) 37°C、60 min 加熱する。
- 6) 90°C、2 min 加熱する。
- 7) 室温までゆっくり下げる。
- 8) 等量のフェノール/クロロホルム/イソアミルアルコール(25:24:1)を加え、よくかくはんする(フェノール処理)。
- 9) 12,000 rpm、5 分間遠心分離する。
- 10) 8)、9)を数回(3回以上)繰り返す。
- 11) 上層(水層)を新しいマイクロチューブに移し、エタノール沈殿を行う。
- 12) エタノール沈殿後、真空遠心乾燥機で約15分間乾燥し、沈殿物を適量の滅菌水(10µl) に溶解する(その後のライゲーションなどに用いるのであれば、少量の滅菌水がよい)。

【Pseudomonas sp. 61-3の total RNAの抽出】

・試薬

- 1) RNAprotect Bacteria Reagent (QIAGEN) (RNA の分解を防ぐ)
- 2) RNeasy Mini (QIAGEN)
- 3) RNase-Free DNase Set (QIAGEN)
- 4) β-メルカプトエタノール (β-ME)
- 5) リゾチーム

- 6) DEPC (diethyl pyrocarbonate) 処理水
- 7) 100%エタノール
- 8) リゾチーム含有 TE buffer (in DEPC 処理水)

試薬を量り取る薬さじ等は、あらかじめ乾熱滅菌しておく。Tris 0.06 g と EDTA 0.01 g を滅菌遠沈管に量り取り、DEPC 処理水で溶解後、全量を 50 mL にする。あらかじ め pH メーターの棒を、RNase 分解酵素を含む RNase Free (Mercury) で拭き、その後 HCI および NaOH の原液を用いて、pH 8.0 に調整する。調整後に、リゾチームを 50 mg 添加し、よく混合させる。

9) β-ME 含有 Buffer RLT(10 µL/mL) キットに含まれている Buffer RLT 10 mL に、β-ME 原液(濃度は 14.3 M)を 100 µL 添 加して混合した。

・操作

<Total RNA の抽出>

- Pseudomonas sp. 61-3 を 1.5 mL の NB 試験管培地に植菌し、28℃ で 18 h 振とう培養(120 strokes/min) を行う。
- 初発菌体濃度が OD₆₀₀=0.05 となるように NB 前培養液を本培養培地である 100 mL の LB 培地および MS 培地(2% グルコース)を含む 500 mL の坂口フラスコに植菌し、8、 12、24 h 振とう培養を行う。
- 3) 本培養後、氷中で酵素活性を停止する。
- 4) 培養液サンプルを 10~100 倍希釈し、OD₆₀₀を測定する。
- 5) 検量線から、培養液中の生菌数を算出し、培養液サンプル中の生菌数を求め、採集するサンプル量を決定する。QIAGENのプロトコールによると、RNeasy Miniスピンカラムの許容生菌数は、7.5×10⁸である。
- 4)で求めた生菌を採取するのに必要なサンプル量の2 倍液量の RNAprotect Bacteria Reagent を、あらかじめ反応チューブ(15 mL 容量の遠沈管など)に入れておく。
- 5)であらかじめ RNAprotect Bacteria Reagent を添加しておいた遠沈管に、4)で求めた生 菌数を含む培養液を入れる。すぐにボルテックスで5秒間ミックスする。5分間室温 でインキュベートする。
- 8) 5,000×g、10 min 遠心する。

- 9) 上清を廃棄する。ペーパータオルの上で遠心チューブを 10 sec 逆さまにして、できる 限り上清を取り除く。ペレットにした状態で、-20℃ で 2 週間、-70℃ で 4 週間まで保 存可能。
- 10) リゾチーム含有 TE buffer を必要量添加する。

バクテリア数	TE(リゾチーム含有)buffer	Buffer RLT	エタノール
$< 5 \times 10^{8}$	$100\mu L$	350 µL	250 µL
$5 \times 10^8 \sim 7.5 \times 10^8$	$200\mu L$	700 µL	500 µL

11) ボルテックスで10 sec 混合し、室温で5 min インキュベートする。その間、ボルテックスで2 min 毎に少なくとも10 sec インキュベーションする。

- 12) サンプルにβ-ME 含有の Buffer RLT を必要量添加し、激しく撹拌する。このとき、微粒子(おそらく DNA およびその他菌体破砕物だと考えられる)が見える場合には、 遠心操作(2 mL以下では、マイクロ遠心機での最高速度で2 min、2 mL以上では 3,000 ~5,000×gで5 min)によりペレット化し、上清のみを次のステップに使用する。
- エタノールを必要量(上記参照)、ライセートに添加する。ピペッティングあるいはボ ルテックスにより混合する。
- 14) 13)で形成したエタノールを含むライセートを沈殿物も含めて全て、2 mL コレクショ ンチューブにセットした RNeasy ミニカラムにアプライする。10,000 rpm で 15 sec 遠心 し、フロースルーを廃棄する(カラムにアプライする最大容量は、700 µL)。RNA の 抽出と同時に DNasel 処理を行う場合は、この操作の後に、DNasel 処理を行う。
- 15) 700 μL の Buffer RW1 を RNeasy カラムにアプライする。チューブを閉めて、10,000 rpm で 15 sec 遠心し、フロースルーとコレクションチューブを廃棄する。
- 16) RNeasy ミニカラムを新しい 2 mL コレクションチューブに移す。500 µL の Buffer RPE をカラムにアプライする。ふたを閉めて 10,000 rpm で 15 sec 遠心し、フロースルーと コレクションチューブを廃棄する。
- 500 µL の Buffer RPE をカラムにアプライする。ふたを閉めて 10,000 rpm で 2 min 遠心し、フロースルーとコレクションチューブを廃棄する。
- RNeasy カラムを新しい 1.5 mL 容量のコレクションチューブに移す。30~50 µL の RNase Free water をメンブレンの中心に直接ピペットでアプライする。ふたを閉めて、 10,000 rpm で 1 min 遠心操作を行い、溶出させる。このとき、カラムを遠心前に 10 分 間インキュベートすることで、RNA の収量が増加する。

 予想される RNA 収量が多い場合は、ここで RNase Free water をさらに添加し、18)を繰り返す。もしくは、18)で得られた溶出液をもう一度メンブレンにアプライし、溶出を 行う。

<DNase I 処理>

DNase は、一度冷凍保存から溶解させたものは、再冷凍させてはならない。冷凍保存にて、9ヶ月安定、2~8℃にて6週間保存可能。また、物理的衝撃に弱いため、ボルテックスはしない。

※ 遠心操作は、必ず室温で行い、20°C以下にならないよう注意する。RNase-Free DNase Set は、約 50 回分のキットである。1500 Kunitz units の粉末状態の DNase I を、RNase free water に溶かし、2.7 Kunitz units/µL になるように調製した(DNase I ストック溶液)。基本的に-20°C で冷凍保存しておき、使用するもののみを冷蔵保存とする。

・操作

- <RNA 抽出時に平行して DNase 処理を行う場合>
- 1) 上記 RNA 抽出プロトコールの 14)の後、RNeasy カラムに、RNA を含むサンプルをロードする。
- RNeasy カラムに、350 µLの Buffer RW1 をアプライする。10,000 rpm で 15 sec 遠心し、 フロースルーを捨てる。
- あらかじめ、マイクロチューブで、10 µLの DNase I ストック溶液を Buffer RDD 70 µL に添加しておく(1サンプル分の必要容量)。チューブを上下にして静かにミックスする。
- 3)で作製したDNase Iインキュベーション溶液80 µLをカラムのメンブレンに直接アプ ライし、室温で2時間半放置する。
- 350 µL の Buffer RW1 をカラムにアプライして、カラムを室温にて 5 min インキュベー ト後、10,000 rpm で 15 sec 遠心し、フロースルーおよびコレクションチューブを廃棄 する。
- 6) RNA 抽出操作の 16)以降の操作を行う。

<RNA 抽出後に DNase 処理を行う場合>

1) 以下のサンプル量に調製する。

RNA solution	≦87.5 <i>µ</i> L
Buffer RDD	$10\mu L$
DNase I	2.5 µL
RNase Free Water	

Up to 100 or 200 μ L

- 2) 20-25℃で、10 min インキュベートする。
- 3) 2)のサンプルに、350 µL の Buffer RLT を添加し、混合する。
- 4) 250 µL のエタノールを加え、ピペッティングする。
- 5) 全量 700 µL のサンプルを2 mL コレクションチューブにセットした RNeasy ミニカラム にアプライする。チューブを静かに閉めて、10,000 rpm で 15 sec 遠心し、フロースルー を廃棄する。
- カラムを新しい2mL コレクションチューブに移し、カラムに 500 µL の Buffer RPE を アプライする。チューブを静かに閉めて、10,000 rpm で 15 sec 遠心し、カラムを洗浄す る。フロースルーは廃棄する。
- 500 µLのBuffer RPEをカラムに添加する。チューブを静かに閉めて、10,000 rpm で 2 min 遠心し、フロースルーとコレクションチューブを廃棄する。
- 8) カラムを新しい2 mL コレクションチューブに移し、15,000 rpm で1 min 遠心し、メン ブレンを完全に乾燥させる。フロースルーとコレクションチューブを廃棄する。
- RNeasy カラムを新しい1.5 mL容量のコレクションチューブに移す。30~50 µLの RNase Free Water をメンブレンの中心に直接ピペットでアプライする。ふたを静かに閉めて、 10,000 rpm で 1 min 遠心操作を行い、RNA を溶出させる。
- 10) 予想される RNA 収量が多い場合は、ここで RNase Free Water をさらに添加し、9)を繰り返す。もしくは、9)で得られた溶出液をもう一度メンブレンにアプライし、9)を行う。

【T4 DNA Polymerase 処理(DNA の平滑化)】

[T4 DNA Polymerase (TOYOBO)]

- ・試薬
- 1) T4 DNA Polymerase (TOYOBO)
- 2) $10 \times buffer$

3) 2 mM dNTPs

・操作

- 1) 制限酵素を行ったプラスミドの乾燥ペレットを 21.5 μ L に溶解した後、10 × buffer 2.5 μ L、2 mM dNTPs 0.5 μ L を加え、最後に T4 DNA Polymerase を 0.5 μ L を加える。
- 37℃、2hインキュベートする。(平滑化が終了すると、しばらくはアイドリング状態 となるが dNTPs が消費され尽くすと DNA の分解が進行するので dNTPs の量と反応 時間に気をつける)。
- 3) 滅菌水を添加し、全量を 200 µL とする。
- 4) 等量の PCI (フェノール/クロロホルム/イソアミルアルコール (25:24:1)) を加え かくはんする。
- 5) 12,000 rpm、5 min、遠心分離する。
- 6) 上清を新しいマイクロチューブに移し、エタノール沈殿を行う。
- エタノール沈殿後、真空遠心乾燥機で約15min沈殿物を乾燥させライゲーションに用いる。

【ポリエステルの抽出】

- 培養により得られた乾燥菌体を乳鉢で細かくすりつぶす(菌体同士がくっついてしまうこともあるので、クロロホルムが浸透できる程度までつぶす)。
- 2) 1Lのクロロホルムにすりつぶした約1.2gの乾燥菌体を少量ずつ添加し、アルミでフ タをし室温で48h以上かくはんさせてPHAを抽出させる(ドラフト内で行う)。
- 3) 抽出液を 0.5 µm の PTFE 膜を用いて吸引ろ過して残渣を取り除く。ろ液はナスフラ スコに回収する。
- 4) ろ液をエバポレーター(約40℃)を用いて、約2mL(粘性が出てくるまで)になる まで濃縮する。
- 5) 濃縮液を1Lのメタノールに駒込ピペットを用いて少量ずつ滴下し、緩やかにかくは んしながら再沈殿させ、滴下終了後も一晩スターラーでかくはんする。

【PHA のソルベントキャストフィルムの作製】

- 乾燥菌体から抽出したポリエステルは、クロロホルムに、2% (w/v)になるように溶かす。あらかじめ、ビーカーにクロロホルムを入れておき、スターラーで撹拌しながら少しずつポリマーを加えて溶解させる。
- スターラーで撹拌させた状態で、一晩放置する。一晩経過後、白濁していたクロロホルム溶液が、透明の液体となる。
- 3) ポリマーに混在する不純物を取り除くためにパスツールピペットにキムワイプを細かく切ったもの(今回は、2×2 cm)をつめて、簡易フィルターとし、20 mLのクロロホルム溶液を、フィルターに通しながら直接シャーレ(直径9 cm)へ入れる(抽出ポリマーには、ゴミや、ろ過に使用した PTFE 膜が混入していると考えられるため、この簡易フィルターによりそれを取り除く。市販のフィルターでは目詰まりを起こしやすい)。このときに、泡が入らないように注意する。
- 4) その後、シャーレにアルミホイルでふたをして、つまようじにて小さな穴を4~5 個あけて(直径4 cm シャーレの場合には3 個)、デシケーター(あらかじめよく焼いたシリカゲルを入れておく)に移す。
- 5) サンプルを振動させないようにクロロホルムを少しずつ蒸発させ、デシケーター内で2週間以上結晶化させて目的のフィルムを得る。

謝辞

本研究を行うにあたり、終始懇切丁寧なご指導、ご助言を頂きました、熊本県立大学環 境共生学部食健康科学科食品バイオ工学研究室、松崎弘美教授に感謝申し上げます。学部 からの6年間に、学会発表等の貴重な経験および学びの場を多く与えてくださり、先生か らも多くのことを学ぶことができ、とても感謝いたしております。また、本研究の遂行に あたり、組換え株の独立培養にご協力いただくとともに、ご多忙な中、丁寧なご指導、ご 助言を賜りました、近畿大学産業理工学部生物環境化学科応用生物工学研究室、田中賢二 教授、ガスクロマトグラフィーの実験操作をはじめ、丁寧なご指導、ご助言を頂きました 本学環境共生学部食健康科学科食品分析学研究室、白土英樹教授に心より感謝いたします。 論文作成や研究の進め方において、数多くのご指導、ご助言を頂きました、本学環境共生 学部食健康科学科食環境安全性学講座、有菌幸司教授、ポリエステルのさまざまな物性試 験にご協力いただきました、東京工業大学大学院総合理工学研究科環境適応型物質講座、 柘植丈治准教授および宮原佑宜氏に厚く御礼申し上げます。

本研究を進めるにあたり、熱心に研究をすすめてくれるとともに、数多くの有益なご意 見をいただきました、本学大学院博士前期課程修了の湯之上祐子さん、磯田美子さん、佐 志綾乃さん、清水日佳里さん、岩崎美佳さん、本学大学院博士前期課程在籍の後藤早希さ ん、脇田和さん、本学卒業の藤野加奈子さん、永井紗和子さん、稲田愛さん、近藤夕夏さ ん、松崎夕美さん、坂本日名子さん、村田和歌子さん、西村綾乃さんに感謝申し上げます。 また、研究室で快適に実験できるようにいつも環境を整えてくれた食品バイオ工学研究室 の皆様に厚く御礼申し上げます。

また、9年間お世話になった、熊本県立大学の諸先生方、職員の皆様ならびに熊本県立 大学大学院の皆様に感謝申しあげます。そして、陰ながらに応援し、支えてくれた卒業生 の皆様および家族に心より感謝いたします。

この研究の一部は、平成 26 年度笹川科学研究助成(研究番号 26-604) を受けて実施されました。